What is the sublist array that can give us maximum 'flip-flop' sum? - algorithm

my problem is that I'm given an array of with length l.
let's say this is my array: [1,5,4,2,9,3,6] let's call this A.
This array can have multiple sub arrays with nodes being adjacent to each other. so we can have [1,5,4] or [2,9,3,6] and so on. the length of each sub array does not matter.
But the trick is the sum part. we cannot just add all numbers, it works like flip flop. so for the sublist [2,9,3,6] the sum would be [2,-9,3,-6] which is: -10. and is pretty small.
what would be the sublist (or sub-array if you like) of this array A that produces the maximum sum?
one possible way would be (from intuition) that the sublist [4,2,9] will output a decent result : [4, -2, 9] = (add all the elements) = 11.
The question is, how to come up with a result like this?
what is the sub-array that gives us the maximum flip-flop sum?
and mainly, what is the algorithm that takes any array as an input and outputs a sub-array with all numbers being adjacent and with the maximum sum?
I haven't come up with anything but I'm pretty sure I should pick either dynamic programming or divide and conquer to solve this issue. again, I don't know, I may be totally wrong.

The problem can indeed be solved using dynamic programming, by keeping track of the maximum sum ending at each position.
However, since the current element can be either added to or subtracted from a sum (depending on the length of the subsequence), we will keep track of the maximum sums ending here, separately, for both even as well as odd subsequence lengths.
The code below (implemented in python) does that (please see comments in the code for additional details).
The time complexity is O(n).
a = [1, 5, 4, 2, 9, 3, 6]
# initialize the best sequences which end at element a[0]
# best sequence with odd length ending at the current position
best_ending_here_odd = a[0] # the sequence sum value
best_ending_here_odd_start_idx = 0
# best sequence with even length ending at the current position
best_ending_here_even = 0 # the sequence sum value
best_ending_here_even_start_idx = 1
best_sum = 0
best_start_idx = 0
best_end_idx = 0
for i in range(1, len(a)):
# add/subtract the current element to the best sequences that
# ended in the previous element
best_ending_here_even, best_ending_here_odd = \
best_ending_here_odd - a[i], best_ending_here_even + a[i]
# swap starting positions (since a sequence which had odd length when it
# was ending at the previous element has even length now, and vice-versa)
best_ending_here_even_start_idx, best_ending_here_odd_start_idx = \
best_ending_here_odd_start_idx, best_ending_here_even_start_idx
# we can always make a sequence of even length with sum 0 (empty sequence)
if best_ending_here_even < 0:
best_ending_here_even = 0
best_ending_here_even_start_idx = i + 1
# update the best known sub-sequence if it is the case
if best_ending_here_even > best_sum:
best_sum = best_ending_here_even
best_start_idx = best_ending_here_even_start_idx
best_end_idx = i
if best_ending_here_odd > best_sum:
best_sum = best_ending_here_odd
best_start_idx = best_ending_here_odd_start_idx
best_end_idx = i
print(best_sum, best_start_idx, best_end_idx)
For the example sequence in the question, the above code outputs the following flip-flop sub-sequence:
4 - 2 + 9 - 3 + 6 = 14

As quertyman wrote, we can use dynamic programming. This is similar to Kadane's algorithm but with a few twists. We need a second temporary variable to keep track of trying each element both as an addition and as a subtraction. Note that a subtraction must be preceded by an addition but not vice versa. O(1) space, O(n) time.
JavaScript code:
function f(A){
let prevAdd = [A[0], 1] // sum, length
let prevSubt = [0, 0]
let best = [0, -1, 0, null] // sum, idx, len, op
let add
let subt
for (let i=1; i<A.length; i++){
// Try adding
add = [A[i] + prevSubt[0], 1 + prevSubt[1]]
if (add[0] > best[0])
best = [add[0], i, add[1], ' + ']
// Try subtracting
if (prevAdd[0] - A[i] > 0)
subt = [prevAdd[0] - A[i], 1 + prevAdd[1]]
else
subt = [0, 0]
if (subt[0] > best[0])
best = [subt[0], i, subt[1], ' - ']
prevAdd = add
prevSubt = subt
}
return best
}
function show(A, sol){
let [sum, i, len, op] = sol
let str = A[i] + ' = ' + sum
for (let l=1; l<len; l++){
str = A[i-l] + op + str
op = op == ' + ' ? ' - ' : ' + '
}
return str
}
var A = [1, 5, 4, 2, 9, 3, 6]
console.log(JSON.stringify(A))
var sol = f(A)
console.log(JSON.stringify(sol))
console.log(show(A, sol))
Update
Per OP's request in the comments, here is some theoretical elaboration on the general recurrence (pseudocode): let f(i, subtract) represent the maximum sum up to and including the element indexed at i, where subtract indicates whether or not the element is subtracted or added. Then:
// Try subtracting
f(i, true) =
if f(i-1, false) - A[i] > 0
then f(i-1, false) - A[i]
otherwise 0
// Try adding
f(i, false) =
A[i] + f(i-1, true)
(Note that when f(i-1, true) evaluates
to zero, the best ending at
i as an addition is just A[i])
The recurrence only depends on the evaluation at the previous element, which means we can code it with O(1) space, just saving the very last evaluation after each iteration, and updating the best so far (including the sequence's ending index and length if we want).

Related

Minimum common remainder of division

I have n pairs of numbers: ( p[1], s[1] ), ( p[2], s[2] ), ... , ( p[n], s[n] )
Where p[i] is integer greater than 1; s[i] is integer : 0 <= s[i] < p[i]
Is there any way to determine minimum positive integer a , such that for each pair :
( s[i] + a ) mod p[i] != 0
Anything better than brute force ?
It is possible to do better than brute force. Brute force would be O(A·n), where A is the minimum valid value for a that we are looking for.
The approach described below uses a min-heap and achieves O(n·log(n) + A·log(n)) time complexity.
First, notice that replacing a with a value of the form (p[i] - s[i]) + k * p[i] leads to a reminder equal to zero in the ith pair, for any positive integer k. Thus, the numbers of that form are invalid a values (the solution that we are looking for is different from all of them).
The proposed algorithm is an efficient way to generate the numbers of that form (for all i and k), i.e. the invalid values for a, in increasing order. As soon as the current value differs from the previous one by more than 1, it means that there was a valid a in-between.
The pseudocode below details this approach.
1. construct a min-heap from all the following pairs (p[i] - s[i], p[i]),
where the heap comparator is based on the first element of the pairs.
2. a0 = -1; maxA = lcm(p[i])
3. Repeat
3a. Retrieve and remove the root of the heap, (a, p[i]).
3b. If a - a0 > 1 then the result is a0 + 1. Exit.
3c. if a is at least maxA, then no solution exists. Exit.
3d. Insert into the heap the value (a + p[i], p[i]).
3e. a0 = a
Remark: it is possible for such an a to not exist. If a valid a is not found below LCM(p[1], p[2], ... p[n]), then it is guaranteed that no valid a exists.
I'll show below an example of how this algorithm works.
Consider the following (p, s) pairs: { (2, 1), (5, 3) }.
The first pair indicates that a should avoid values like 1, 3, 5, 7, ..., whereas the second pair indicates that we should avoid values like 2, 7, 12, 17, ... .
The min-heap initially contains the first element of each sequence (step 1 of the pseudocode) -- shown in bold below:
1, 3, 5, 7, ...
2, 7, 12, 17, ...
We retrieve and remove the head of the heap, i.e., the minimum value among the two bold ones, and this is 1. We add into the heap the next element from that sequence, thus the heap now contains the elements 2 and 3:
1, 3, 5, 7, ...
2, 7, 12, 17, ...
We again retrieve the head of the heap, this time it contains the value 2, and add the next element of that sequence into the heap:
1, 3, 5, 7, ...
2, 7, 12, 17, ...
The algorithm continues, we will next retrieve value 3, and add 5 into the heap:
1, 3, 5, 7, ...
2, 7, 12, 17, ...
Finally, now we retrieve value 5. At this point we realize that the value 4 is not among the invalid values for a, thus that is the solution that we are looking for.
I can think of two different solutions. First:
p_max = lcm (p[0],p[1],...,p[n]) - 1;
for a = 0 to p_max:
zero_found = false;
for i = 0 to n:
if ( s[i] + a ) mod p[i] == 0:
zero_found = true;
break;
if !zero_found:
return a;
return -1;
I suppose this is the one you call "brute force". Notice that p_max represents Least Common Multiple of p[i]s - 1 (solution is either in the closed interval [0, p_max], or it does not exist). Complexity of this solution is O(n * p_max) in the worst case (plus the running time for calculating lcm!). There is a better solution regarding the time complexity, but it uses an additional binary array - classical time-space tradeoff. Its idea is similar to the Sieve of Eratosthenes, but for remainders instead of primes :)
p_max = lcm (p[0],p[1],...,p[n]) - 1;
int remainders[p_max + 1] = {0};
for i = 0 to n:
int rem = s[i] - p[i];
while rem >= -p_max:
remainders[-rem] = 1;
rem -= p[i];
for i = 0 to n:
if !remainders[i]:
return i;
return -1;
Explanation of the algorithm: first, we create an array remainders that will indicate whether certain negative remainder exists in the whole set. What is a negative remainder? It's simple, notice that 6 = 2 mod 4 is equivalent to 6 = -2 mod 4. If remainders[i] == 1, it means that if we add i to one of the s[j], we will get p[j] (which is 0, and that is what we want to avoid). Array is populated with all possible negative remainders, up to -p_max. Now all we have to do is search for the first i, such that remainder[i] == 0 and return it, if it exists - notice that the solution does not have to exists. In the problem text, you have indicated that you are searching for the minimum positive integer, I don't see why zero would not fit (if all s[i] are positive). However, if that is a strong requirement, just change the for loop to start from 1 instead of 0, and increment p_max.
The complexity of this algorithm is n + sum (p_max / p[i]) = n + p_max * sum (1 / p[i]), where i goes from to 0 to n. Since all p[i]s are at least 2, that is asymptotically better than the brute force solution.
An example for better understanding: suppose that the input is (5,4), (5,1), (2,0). p_max is lcm(5,5,2) - 1 = 10 - 1 = 9, so we create array with 10 elements, initially filled with zeros. Now let's proceed pair by pair:
from the first pair, we have remainders[1] = 1 and remainders[6] = 1
second pair gives remainders[4] = 1 and remainders[9] = 1
last pair gives remainders[0] = 1, remainders[2] = 1, remainders[4] = 1, remainders[6] = 1 and remainders[8] = 1.
Therefore, first index with zero value in the array is 3, which is a desired solution.

Find number of continuous subarray having sum zero

You have given a array and You have to give number of continuous subarray which the sum is zero.
example:
1) 0 ,1,-1,0 => 6 {{0},{1,-1},{0,1,-1},{1,-1,0},{0}};
2) 5, 2, -2, 5 ,-5, 9 => 3.
With O(n^2) it can be done.I am trying to find the solution below this complexity.
Consider S[0..N] - prefix sums of your array, i.e. S[k] = A[0] + A[1] + ... + A[k-1] for k from 0 to N.
Now sum of elements from L to R-1 is zero if and only if S[R] = S[L]. It means that you have to find number of indices 0 <= L < R <= N such that S[L] = S[R].
This problem can be solved with a hash table. Iterate over elements of S[] while maintaining for each value X number of times it was met in the already processed part of S[]. These counts should be stored in a hash map, where the number X is a key, and the count H[X] is the value. When you meet a new elements S[i], add H[S[i]] to your answer (these account for substrings ending with (i-1)-st element), then increment H[S[i]] by one.
Note that if sum of absolute values of array elements is small, you can use a simple array instead of hash table. The complexity is linear on average.
Here is the code:
long long CountZeroSubstrings(vector<int> A) {
int n = A.size();
vector<long long> S(n+1, 0);
for (int i = 0; i < n; i++)
S[i+1] = S[i] + A[i];
long long answer = 0;
unordered_map<long long, int> H;
for (int i = 0; i <= n; i++) {
if (H.count(S[i]))
answer += H[S[i]];
H[S[i]]++;
}
return answer;
}
This can be solved in linear time by keeping a hash table of sums reached during the array traversal. The number of subsets can then be directly calculated from the counts of revisited sums.
Haskell version:
import qualified Data.Map as M
import Data.List (foldl')
f = foldl' (\b a -> b + div (a * (a + 1)) 2) 0 . M.elems . snd
. foldl' (\(s,m) x -> let s' = s + x in case M.lookup s' m of
Nothing -> (s',M.insert s' 0 m)
otherwise -> (s',M.adjust (+1) s' m)) (0,M.fromList[(0,0)])
Output:
*Main> f [0,1,-1,0]
6
*Main> f [5,2,-2,5,-5,9]
3
*Main> f [0,0,0,0]
10
*Main> f [0,1,0,0]
4
*Main> f [0,1,0,0,2,3,-3]
5
*Main> f [0,1,-1,0,0,2,3,-3]
11
C# version of #stgatilov answer https://stackoverflow.com/a/31489960/3087417 with readable variables:
int[] sums = new int[arr.Count() + 1];
for (int i = 0; i < arr.Count(); i++)
sums[i + 1] = sums[i] + arr[i];
int numberOfFragments = 0;
Dictionary<int, int> sumToNumberOfRepetitions = new Dictionary<int, int>();
foreach (int item in sums)
{
if (sumToNumberOfRepetitions.ContainsKey(item))
numberOfFragments += sumToNumberOfRepetitions[item];
else
sumToNumberOfRepetitions.Add(item, 0);
sumToNumberOfRepetitions[item]++;
}
return numberOfFragments;
If you want to have sum not only zero but any number k, here is the hint:
int numToFind = currentSum - k;
if (sumToNumberOfRepetitions.ContainsKey(numToFind))
numberOfFragments += sumToNumberOfRepetitions[numToFind];
I feel it can be solved using DP:
Let the state be :
DP[i][j] represents the number of ways j can be formed using all the subarrays ending at i!
Transitions:
for every element in the initial step ,
Increase the number of ways to form Element[i] using i elements by 1 i.e. using the subarray of length 1 starting from i and ending with i i.e
DP[i][Element[i]]++;
then for every j in Range [ -Mod(highest Magnitude of any element ) , Mod(highest Magnitude of any element) ]
DP[i][j]+=DP[i-1][j-Element[i]];
Then your answer will be the sum of all the DP[i][0] (Number of ways to form 0 using subarrays ending at i ) where i varies from 1 to Number of elements
Complexity is O(MOD highest magnitude of any element * Number of Elements)
https://www.techiedelight.com/find-sub-array-with-0-sum/
This would be an exact solution.
# Utility function to insert <key, value> into the dict
def insert(dict, key, value):
# if the key is seen for the first time, initialize the list
dict.setdefault(key, []).append(value)
# Function to print all sub-lists with 0 sum present
# in the given list
def printallSublists(A):
# create an empty -dict to store ending index of all
# sub-lists having same sum
dict = {}
# insert (0, -1) pair into the dict to handle the case when
# sub-list with 0 sum starts from index 0
insert(dict, 0, -1)
result = 0
sum = 0
# traverse the given list
for i in range(len(A)):
# sum of elements so far
sum += A[i]
# if sum is seen before, there exists at-least one
# sub-list with 0 sum
if sum in dict:
list = dict.get(sum)
result += len(list)
# find all sub-lists with same sum
for value in list:
print("Sublist is", (value + 1, i))
# insert (sum so far, current index) pair into the -dict
insert(dict, sum, i)
print("length :", result)
if __name__ == '__main__':
A = [0, 1, 2, -3, 0, 2, -2]
printallSublists(A)
I don't know what the complexity of my suggestion would be but i have an idea :)
What you can do is try to reduce element from main array which are not able to contribute for you solution
suppose elements are -10, 5, 2, -2, 5,7 ,-5, 9,11,19
so you can see that -10,9,11 and 19 are element
that are never gone be useful to make sum 0 in your case
so try to remove -10,9,11, and 19 from your main array
to do this what you can do is
1) create two sub array from your main array
`positive {5,7,2,9,11,19}` and `negative {-10,-2,-5}`
2) remove element from positive array which does not satisfy condition
condition -> value should be construct from negative arrays element
or sum of its elements
ie.
5 = -5 //so keep it //don't consider the sign
7 = (-5 + -2 ) // keep
2 = -2 // keep
9 // cannot be construct using -10,-2,-5
same for all 11 and 19
3) remove element form negative array which does not satisfy condition
condition -> value should be construct from positive arrays element
or sum of its elements
i.e. -10 // cannot be construct so discard
-2 = 2 // keep
-5 = 5 // keep
so finally you got an array which contains -2,-5,5,7,2 create all possible sub array form it and check for sum = 0
(Note if your input array contains 0 add all 0's in final array)

Find max sum of elements in an array ( with twist)

Given a array with +ve and -ve integer , find the maximum sum such that you are not allowed to skip 2 contiguous elements ( i.e you have to select at least one of them to move forward).
eg :-
10 , 20 , 30, -10 , -50 , 40 , -50, -1, -3
Output : 10+20+30-10+40-1 = 89
This problem can be solved using Dynamic Programming approach.
Let arr be the given array and opt be the array to store the optimal solutions.
opt[i] is the maximum sum that can be obtained starting from element i, inclusive.
opt[i] = arr[i] + (some other elements after i)
Now to solve the problem we iterate the array arr backwards, each time storing the answer opt[i].
Since we cannot skip 2 contiguous elements, either element i+1 or element i+2 has to be included
in opt[i].
So for each i, opt[i] = arr[i] + max(opt[i+1], opt[i+2])
See this code to understand:
int arr[n]; // array of given numbers. array size = n.
nput(arr, n); // input the array elements (given numbers)
int opt[n+2]; // optimal solutions.
memset(opt, 0, sizeof(opt)); // Initially set all optimal solutions to 0.
for(int i = n-1; i >= 0; i--) {
opt[i] = arr[i] + max(opt[i+1], opt[i+2]);
}
ans = max(opt[0], opt[1]) // final answer.
Observe that opt array has n+2 elements. This is to avoid getting illegal memory access exception (memory out of bounds) when we try to access opt[i+1] and opt[i+2] for the last element (n-1).
See the working implementation of the algorithm given above
Use a recurrence that accounts for that:
dp[i] = max(dp[i - 1] + a[i], <- take two consecutives
dp[i - 2] + a[i], <- skip a[i - 1])
Base cases left as an exercise.
If you see a +ve integer add it to the sum. If you see a negative integer, then inspect the next integer pick which ever is maximum and add it to the sum.
10 , 20 , 30, -10 , -50 , 40 , -50, -1, -3
For this add 10, 20, 30, max(-10, -50), 40 max(-50, -1) and since there is no element next to -3 discard it.
The last element will go to sum if it was +ve.
Answer:
I think this algorithm will help.
1. Create a method which gives output the maximum sum of particular user input array say T[n], where n denotes the total no. of elements.
2. Now this method will keep on adding array elements till they are positive. As we want to maximize the sum and there is no point in dropping positive elements behind.
3. As soon as our method encounters a negative element, it will transfer all consecutive negative elements to another method which create a new array say N[i] such that this array will contain all the consecutive negative elements that we encountered in T[n] and returns N[i]'s max output.
In this way our main method is not affected and its keep on adding positive elements and whenever it encounters negative element, it instead of adding their real values adds the net max output of that consecutive array of negative elements.
for example: T[n] = 29,34,55,-6,-5,-4,6,43,-8,-9,-4,-3,2,78 //here n=14
Main Method Working:
29+34+55+(sends data & gets value from Secondary method of array [-6,-5,-4])+6+43+(sends data & gets value from Secondary method of array [-8,-9,-4,-3])+2+78
Process Terminates with max output.
Secondary Method Working:
{
N[i] = gets array from Main method or itself as and when required.
This is basically a recursive method.
say N[i] has elements like N1, N2, N3, N4, etc.
for i>=3:
Now choice goes like this.
1. If we take N1 then we can recurse the left off array i.e. N[i-1] which has all elements except N1 in same order. Such that the net max output will be
N1+(sends data & gets value from Secondary method of array N[i-1] recursively)
2. If we doesn't take N1, then we cannot skip N2. So, Now algorithm is like 1st choice but starting with N2. So max output in this case will be
N2+(sends data & gets value from Secondary method of array N[i-2] recursively).
Here N[i-2] is an array containing all N[i] elements except N1 & N2 in same order.
Termination: When we are left with the array of size one ( for N[i-2] ) then we have to choose that particular value as no option.
The recursions will finally yield the max outputs and we have to finally choose the output of that choice which is more.
and redirect the max output to wherever required.
for i=2:
we have to choose the value which is bigger
for i=1:
We can surely skip that value.
So max output in this case will be 0.
}
I think this answer will help to you.
Given array:
Given:- 10 20 30 -10 -50 40 -50 -1 -3
Array1:-10 30 60 50 10 90 40 89 86
Array2:-10 20 50 40 0 80 30 79 76
Take the max value of array1[n-1],array1[n],array2[n-1],array2[n] i.e 89(array1[n-1])
Algorithm:-
For the array1 value assign array1[0]=a[0],array1=a[0]+a[1] and array2[0]=a[0],array2[1]=a[1].
calculate the array1 value from 2 to n is max of sum of array1[i-1]+a[i] or array1[i-2]+a[i].
for loop from 2 to n{
array1[i]=max(array1[i-1]+a[i],array1[i-2]+a[i]);
}
similarly for array2 value from 2 to n is max of sum of array2[i-1]+a[i] or array2[i-2]+a[i].
for loop from 2 to n{
array2[i]=max(array2[i-1]+a[i],array2[i-2]+a[i]);
}
Finally find the max value of array1[n-1],array[n],array2[n-1],array2[n];
int max(int a,int b){
return a>b?a:b;
}
int main(){
int a[]={10,20,30,-10,-50,40,-50,-1,-3};
int i,n,max_sum;
n=sizeof(a)/sizeof(a[0]);
int array1[n],array2[n];
array1[0]=a[0];
array1[1]=a[0]+a[1];
array2[0]=a[0];
array2[1]=a[1];
for loop from 2 to n{
array1[i]=max(array1[i-1]+a[i],array1[i-2]+a[i]);
array2[i]=max(array2[i-1]+a[i],array2[i-2]+a[i]);
}
--i;
max_sum=max(array1[i],array1[i-1]);
max_sum=max(max_sum,array2[i-1]);
max_sum=max(max_sum,array2[i]);
printf("The max_sum is %d",max_sum);
return 0;
}
Ans: The max_sum is 89
public static void countSum(int[] a) {
int count = 0;
int skip = 0;
int newCount = 0;
if(a.length==1)
{
count = a[0];
}
else
{
for(int i:a)
{
newCount = count + i;
if(newCount>=skip)
{
count = newCount;
skip = newCount;
}
else
{
count = skip;
skip = newCount;
}
}
}
System.out.println(count);
}
}
Let the array be of size N, indexed as 1...N
Let f(n) be the function, that provides the answer for max sum of sub array (1...n), such that no two left over elements are consecutive.
f(n) = max (a[n-1] + f(n-2), a(n) + f(n-1))
In first option, which is - {a[n-1] + f(n-2)}, we are leaving the last element, and due to condition given in question selecting the second last element.
In the second option, which is - {a(n) + f(n-1)} we are selecting the last element of the subarray, so we have an option to select/deselect the second last element.
Now starting from the base case :
f(0) = 0 [Subarray (1..0) doesn't exist]
f(1) = (a[1] > 0 ? a[1] : 0); [Subarray (1..1)]
f(2) = max( a(2) + 0, a[1] + f(1)) [Choosing atleast one of them]
Moving forward we can calculate any f(n), where n = 1...N, and store them to calculate next results. And yes, obviously, the case f(N) will give us the answer.
Time complexity o(n)
Space complexity o(n)
n = arr.length().
Append a 0 at the end of the array to handle boundary case.
ans: int array of size n+1.
ans[i] will store the answer for array a[0...i] which includes a[i] in the answer sum.
Now,
ans[0] = a[0]
ans[1] = max(a[1], a[1] + ans[0])
for i in [2,n-1]:
ans[i] = max(ans[i-1] , ans[i-2]) + a[i]
Final answer would be a[n]
If you want to avoid using Dynamic Programming
To find the maximum sum, first, you've to add all the positive
numbers.
We'll be skipping only negative elements. Since we're not
allowed to skip 2 contiguous elements, we will put all contiguous
negative elements in a temp array, and can figure out the maximum sum
of alternate elements using sum_odd_even function as defined below.
Then we can add the maximum of all such temp arrays to our sum of all
positive numbers. And the final sum will give us the desired output.
Code:
def sum_odd_even(arr):
sum1 = sum2 = 0
for i in range(len(arr)):
if i%2 == 0:
sum1 += arr[i]
else:
sum2 += arr[i]
return max(sum1,sum2)
input = [10, 20, 30, -10, -50, 40, -50, -1, -3]
result = 0
temp = []
for i in range(len(input)):
if input[i] > 0:
result += input[i]
if input[i] < 0 and i != len(input)-1:
temp.append(input[i])
elif input[i] < 0:
temp.append(input[i])
result += sum_odd_even(temp)
temp = []
else:
result += sum_odd_even(temp)
temp = []
print result
Simple Solution: Skip with twist :). Just skip the smallest number in i & i+1 if consecutive -ve. Have if conditions to check that till n-2 elements and check for the last element in the end.
int getMaxSum(int[] a) {
int sum = 0;
for (int i = 0; i <= a.length-2; i++) {
if (a[i]>0){
sum +=a[i];
continue;
} else if (a[i+1] > 0){
i++;
continue;
} else {
sum += Math.max(a[i],a[i+1]);
i++;
}
}
if (a[a.length-1] > 0){
sum+=a[a.length-1];
}
return sum;
}
The correct recurrence is as follow:
dp[i] = max(dp[i - 1] + a[i], dp[i - 2] + a[i - 1])
The first case is the one we pick the i-th element. The second case is the one we skip the i-th element. In the second case, we must pick the (i-1)th element.
The problem of IVlad's answer is that it always pick i-th element, which can lead to incorrect answer.
This question can be solved using include,exclude approach.
For first element, include = arr[0], exclude = 0.
For rest of the elements:
nextInclude = arr[i]+max(include, exclude)
nextExclude = include
include = nextInclude
exclude = nextExclude
Finally, ans = Math.max(include,exclude).
Similar questions can be referred at (Not the same)=> https://www.youtube.com/watch?v=VT4bZV24QNo&t=675s&ab_channel=Pepcoding.

How to get to array with the smallest sum

I was given this interview question, and I totally blanked out. How would you guys solve this:
Go from the start of an array to the end in a way that you minimize the sum of elements that you land on.
You can move to the next element, i.e go from index 1 to index 2.
Or you can hop one element over. i.e go from index 1 to index 3.
Assuming that you only move from left to right, and you want to find a way to get from index 0 to index n - 1 of an array of n elements, so that the sum of the path you take is minimum. From index i, you can only move ahead to index i + 1 or index i + 2.
Observe that the minimum path to get from index 0 to index k is the minimum between the minimum path to get from index 0 to index k - 1 and the mininum path from index 0 to index k- 2. There is simply no other path to take.
Therefore, we can have a dynamic programming solution:
DP[0] = A[0]
DP[1] = A[0] + A[1]
DP[k] = min(DP[0], DP[1]) + A[k]
A is the array of elements.
DP array will store the minimum sum to reach element at index i from index 0.
The result will be in DP[n - 1].
Java:
static int getMinSum(int elements[])
{
if (elements == null || elements.length == 0)
{
throw new IllegalArgumentException("No elements");
}
if (elements.length == 1)
{
return elements[0];
}
int minSum[] = new int[elements.length];
minSum[0] = elements[0];
minSum[1] = elements[0] + elements[1];
for (int i = 2; i < elements.length; i++)
{
minSum[i] = Math.min(minSum[i - 1] + elements[i], minSum[i - 2] + elements[i]);
}
return Math.min(minSum[elements.length - 2], minSum[elements.length - 1]);
}
Input:
int elements[] = { 1, -2, 3 };
System.out.println(getMinSum(elements));
Output:
-1
Case description:
We start from the index 0. We must take 1. Now we can go to index 1 or 2. Since -2 is attractive, we choose it. Now we can go to index 2 or hop it. Better hop and our sum is minimal 1 + (-2) = -1.
Another examples (pseudocode):
getMinSum({1, 1, 10, 1}) == 3
getMinSum({1, 1, 10, 100, 1000}) == 102
Algorithm:
O(n) complexity. Dynamic programming. We go from left to right filling up minSum array. Invariant: minSum[i] = min(minSum[i - 1] + elements[i] /* move by 1 */ , minSum[i - 2] + elements[i] /* hop */ ).
This seems like the perfect place for a dynamic programming solution.
Keeping track of two values, odd/even.
We will take Even to mean we used the previous value, and Odd to mean we haven't.
int Even = 0; int Odd = 0;
int length = arr.length;
Start at the back. We can either take the number or not. Therefore:
Even = arr[length];
Odd = 0;`
And now we move to the next element with two cases. Either we were even, in which case we have the choice to take the element or skip it. Or we were odd and had to take the element.
int current = arr[length - 1]
Even = Min(Even + current, Odd + current);
Odd = Even;
We can make a loop out of this and achieve a O(n) solution!

Algorithm to find two repeated numbers in an array, without sorting

There is an array of size n (numbers are between 0 and n - 3) and only 2 numbers are repeated. Elements are placed randomly in the array.
E.g. in {2, 3, 6, 1, 5, 4, 0, 3, 5} n=9, and repeated numbers are 3 and 5.
What is the best way to find the repeated numbers?
P.S. [You should not use sorting]
There is a O(n) solution if you know what the possible domain of input is. For example if your input array contains numbers between 0 to 100, consider the following code.
bool flags[100];
for(int i = 0; i < 100; i++)
flags[i] = false;
for(int i = 0; i < input_size; i++)
if(flags[input_array[i]])
return input_array[i];
else
flags[input_array[i]] = true;
Of course there is the additional memory but this is the fastest.
OK, seems I just can't give it a rest :)
Simplest solution
int A[N] = {...};
int signed_1(n) { return n%2<1 ? +n : -n; } // 0,-1,+2,-3,+4,-5,+6,-7,...
int signed_2(n) { return n%4<2 ? +n : -n; } // 0,+1,-2,-3,+4,+5,-6,-7,...
long S1 = 0; // or int64, or long long, or some user-defined class
long S2 = 0; // so that it has enough bits to contain sum without overflow
for (int i=0; i<N-2; ++i)
{
S1 += signed_1(A[i]) - signed_1(i);
S2 += signed_2(A[i]) - signed_2(i);
}
for (int i=N-2; i<N; ++i)
{
S1 += signed_1(A[i]);
S2 += signed_2(A[i]);
}
S1 = abs(S1);
S2 = abs(S2);
assert(S1 != S2); // this algorithm fails in this case
p = (S1+S2)/2;
q = abs(S1-S2)/2;
One sum (S1 or S2) contains p and q with the same sign, the other sum - with opposite signs, all other members are eliminated.
S1 and S2 must have enough bits to accommodate sums, the algorithm does not stand for overflow because of abs().
if abs(S1)==abs(S2) then the algorithm fails, though this value will still be the difference between p and q (i.e. abs(p - q) == abs(S1)).
Previous solution
I doubt somebody will ever encounter such a problem in the field ;)
and I guess, I know the teacher's expectation:
Lets take array {0,1,2,...,n-2,n-1},
The given one can be produced by replacing last two elements n-2 and n-1 with unknown p and q (less order)
so, the sum of elements will be (n-1)n/2 + p + q - (n-2) - (n-1)
the sum of squares (n-1)n(2n-1)/6 + p^2 + q^2 - (n-2)^2 - (n-1)^2
Simple math remains:
(1) p+q = S1
(2) p^2+q^2 = S2
Surely you won't solve it as math classes teach to solve square equations.
First, calculate everything modulo 2^32, that is, allow for overflow.
Then check pairs {p,q}: {0, S1}, {1, S1-1} ... against expression (2) to find candidates (there might be more than 2 due to modulo and squaring)
And finally check found candidates if they really are present in array twice.
You know that your Array contains every number from 0 to n-3 and the two repeating ones (p & q). For simplicity, lets ignore the 0-case for now.
You can calculate the sum and the product over the array, resulting in:
1 + 2 + ... + n-3 + p + q = p + q + (n-3)(n-2)/2
So if you substract (n-3)(n-2)/2 from the sum of the whole array, you get
sum(Array) - (n-3)(n-2)/2 = x = p + q
Now do the same for the product:
1 * 2 * ... * n - 3 * p * q = (n - 3)! * p * q
prod(Array) / (n - 3)! = y = p * q
Your now got these terms:
x = p + q
y = p * q
=> y(p + q) = x(p * q)
If you transform this term, you should be able to calculate p and q
Insert each element into a set/hashtable, first checking if its are already in it.
You might be able to take advantage of the fact that sum(array) = (n-2)*(n-3)/2 + two missing numbers.
Edit: As others have noted, combined with the sum-of-squares, you can use this, I was just a little slow in figuring it out.
Check this old but good paper on the topic:
Finding Repeated Elements (PDF)
Some answers to the question: Algorithm to determine if array contains n…n+m? contain as a subproblem solutions which you can adopt for your purpose.
For example, here's a relevant part from my answer:
bool has_duplicates(int* a, int m, int n)
{
/** O(m) in time, O(1) in space (for 'typeof(m) == typeof(*a) == int')
Whether a[] array has duplicates.
precondition: all values are in [n, n+m) range.
feature: It marks visited items using a sign bit.
*/
assert((INT_MIN - (INT_MIN - 1)) == 1); // check n == INT_MIN
for (int *p = a; p != &a[m]; ++p) {
*p -= (n - 1); // [n, n+m) -> [1, m+1)
assert(*p > 0);
}
// determine: are there duplicates
bool has_dups = false;
for (int i = 0; i < m; ++i) {
const int j = abs(a[i]) - 1;
assert(j >= 0);
assert(j < m);
if (a[j] > 0)
a[j] *= -1; // mark
else { // already seen
has_dups = true;
break;
}
}
// restore the array
for (int *p = a; p != &a[m]; ++p) {
if (*p < 0)
*p *= -1; // unmark
// [1, m+1) -> [n, n+m)
*p += (n - 1);
}
return has_dups;
}
The program leaves the array unchanged (the array should be writeable but its values are restored on exit).
It works for array sizes upto INT_MAX (on 64-bit systems it is 9223372036854775807).
suppose array is
a[0], a[1], a[2] ..... a[n-1]
sumA = a[0] + a[1] +....+a[n-1]
sumASquare = a[0]*a[0] + a[1]*a[1] + a[2]*a[2] + .... + a[n]*a[n]
sumFirstN = (N*(N+1))/2 where N=n-3 so
sumFirstN = (n-3)(n-2)/2
similarly
sumFirstNSquare = N*(N+1)*(2*N+1)/6 = (n-3)(n-2)(2n-5)/6
Suppose repeated elements are = X and Y
so X + Y = sumA - sumFirstN;
X*X + Y*Y = sumASquare - sumFirstNSquare;
So on solving this quadratic we can get value of X and Y.
Time Complexity = O(n)
space complexity = O(1)
I know the question is very old but I suddenly hit it and I think I have an interesting answer to it.
We know this is a brainteaser and a trivial solution (i.e. HashMap, Sort, etc) no matter how good they are would be boring.
As the numbers are integers, they have constant bit size (i.e. 32). Let us assume we are working with 4 bit integers right now. We look for A and B which are the duplicate numbers.
We need 4 buckets, each for one bit. Each bucket contains numbers which its specific bit is 1. For example bucket 1 gets 2, 3, 4, 7, ...:
Bucket 0 : Sum ( x where: x & 2 power 0 == 0 )
...
Bucket i : Sum ( x where: x & 2 power i == 0 )
We know what would be the sum of each bucket if there was no duplicate. I consider this as prior knowledge.
Once above buckets are generated, a bunch of them would have values more than expected. By constructing the number from buckets we will have (A OR B for your information).
We can calculate (A XOR B) as follows:
A XOR B = Array[i] XOR Array[i-1] XOR ... 0, XOR n-3 XOR n-2 ... XOR 0
Now going back to buckets, we know exactly which buckets have both our numbers and which ones have only one (from the XOR bit).
For the buckets that have only one number we can extract the number num = (sum - expected sum of bucket). However, we should be good only if we can find one of the duplicate numbers so if we have at least one bit in A XOR B, we've got the answer.
But what if A XOR B is zero?
Well this case is only possible if both duplicate numbers are the same number, which then our number is the answer of A OR B.
Sorting the array would seem to be the best solution. A simple sort would then make the search trivial and would take a whole lot less time/space.
Otherwise, if you know the domain of the numbers, create an array with that many buckets in it and increment each as you go through the array. something like this:
int count [10];
for (int i = 0; i < arraylen; i++) {
count[array[i]]++;
}
Then just search your array for any numbers greater than 1. Those are the items with duplicates. Only requires one pass across the original array and one pass across the count array.
Here's implementation in Python of #eugensk00's answer (one of its revisions) that doesn't use modular arithmetic. It is a single-pass algorithm, O(log(n)) in space. If fixed-width (e.g. 32-bit) integers are used then it is requires only two fixed-width numbers (e.g. for 32-bit: one 64-bit number and one 128-bit number). It can handle arbitrary large integer sequences (it reads one integer at a time therefore a whole sequence doesn't require to be in memory).
def two_repeated(iterable):
s1, s2 = 0, 0
for i, j in enumerate(iterable):
s1 += j - i # number_of_digits(s1) ~ 2 * number_of_digits(i)
s2 += j*j - i*i # number_of_digits(s2) ~ 4 * number_of_digits(i)
s1 += (i - 1) + i
s2 += (i - 1)**2 + i**2
p = (s1 - int((2*s2 - s1**2)**.5)) // 2
# `Decimal().sqrt()` could replace `int()**.5` for really large integers
# or any function to compute integer square root
return p, s1 - p
Example:
>>> two_repeated([2, 3, 6, 1, 5, 4, 0, 3, 5])
(3, 5)
A more verbose version of the above code follows with explanation:
def two_repeated_seq(arr):
"""Return the only two duplicates from `arr`.
>>> two_repeated_seq([2, 3, 6, 1, 5, 4, 0, 3, 5])
(3, 5)
"""
n = len(arr)
assert all(0 <= i < n - 2 for i in arr) # all in range [0, n-2)
assert len(set(arr)) == (n - 2) # number of unique items
s1 = (n-2) + (n-1) # s1 and s2 have ~ 2*(k+1) and 4*(k+1) digits
s2 = (n-2)**2 + (n-1)**2 # where k is a number of digits in `max(arr)`
for i, j in enumerate(arr):
s1 += j - i
s2 += j*j - i*i
"""
s1 = (n-2) + (n-1) + sum(arr) - sum(range(n))
= sum(arr) - sum(range(n-2))
= sum(range(n-2)) + p + q - sum(range(n-2))
= p + q
"""
assert s1 == (sum(arr) - sum(range(n-2)))
"""
s2 = (n-2)**2 + (n-1)**2 + sum(i*i for i in arr) - sum(i*i for i in range(n))
= sum(i*i for i in arr) - sum(i*i for i in range(n-2))
= p*p + q*q
"""
assert s2 == (sum(i*i for i in arr) - sum(i*i for i in range(n-2)))
"""
s1 = p+q
-> s1**2 = (p+q)**2
-> s1**2 = p*p + 2*p*q + q*q
-> s1**2 - (p*p + q*q) = 2*p*q
s2 = p*p + q*q
-> p*q = (s1**2 - s2)/2
Let C = p*q = (s1**2 - s2)/2 and B = p+q = s1 then from Viete theorem follows
that p and q are roots of x**2 - B*x + C = 0
-> p = (B + sqrtD) / 2
-> q = (B - sqrtD) / 2
where sqrtD = sqrt(B**2 - 4*C)
-> p = (s1 + sqrt(2*s2 - s1**2))/2
"""
sqrtD = (2*s2 - s1**2)**.5
assert int(sqrtD)**2 == (2*s2 - s1**2) # perfect square
sqrtD = int(sqrtD)
assert (s1 - sqrtD) % 2 == 0 # even
p = (s1 - sqrtD) // 2
q = s1 - p
assert q == ((s1 + sqrtD) // 2)
assert sqrtD == (q - p)
return p, q
NOTE: calculating integer square root of a number (~ N**4) makes the above algorithm non-linear.
Since a range is specified, you can perform radix sort. This would sort your array in O(n). Searching for duplicates in a sorted array is then O(n)
You can use simple nested for loop
int[] numArray = new int[] { 1, 2, 3, 4, 5, 7, 8, 3, 7 };
for (int i = 0; i < numArray.Length; i++)
{
for (int j = i + 1; j < numArray.Length; j++)
{
if (numArray[i] == numArray[j])
{
//DO SOMETHING
}
}
*OR you can filter the array and use recursive function if you want to get the count of occurrences*
int[] array = { 1, 2, 3, 4, 5, 4, 4, 1, 8, 9, 23, 4, 6, 8, 9, 1,4 };
int[] myNewArray = null;
int a = 1;
void GetDuplicates(int[] array)
for (int i = 0; i < array.Length; i++)
{
for (int j = i + 1; j < array.Length; j++)
{
if (array[i] == array[j])
{
a += 1;
}
}
Console.WriteLine(" {0} occurred {1} time/s", array[i], a);
IEnumerable<int> num = from n in array where n != array[i] select n;
myNewArray = null;
a = 1;
myNewArray = num.ToArray() ;
break;
}
GetDuplicates(myNewArray);
answer to 18..
you are taking an array of 9 and elements are starting from 0..so max ele will be 6 in your array. Take sum of elements from 0 to 6 and take sum of array elements. compute their difference (say d). This is p + q. Now take XOR of elements from 0 to 6 (say x1). Now take XOR of array elements (say x2). x2 is XOR of all elements from 0 to 6 except two repeated elements since they cancel out each other. now for i = 0 to 6, for each ele of array, say p is that ele a[i] so you can compute q by subtracting this ele from the d. do XOR of p and q and XOR them with x2 and check if x1==x2. likewise doing for all elements you will get the elements for which this condition will be true and you are done in O(n). Keep coding!
check this out ...
O(n) time and O(1) space complexity
for(i=0;i< n;i++)
xor=xor^arr[i]
for(i=1;i<=n-3;i++)
xor=xor^i;
So in the given example you will get the xor of 3 and 5
xor=xor & -xor //Isolate the last digit
for(i = 0; i < n; i++)
{
if(arr[i] & xor)
x = x ^ arr[i];
else
y = y ^ arr[i];
}
for(i = 1; i <= n-3; i++)
{
if(i & xor)
x = x ^ i;
else
y = y ^ i;
}
x and y are your answers
For each number: check if it exists in the rest of the array.
Without sorting you're going to have a keep track of numbers you've already visited.
in psuedocode this would basically be (done this way so I'm not just giving you the answer):
for each number in the list
if number not already in unique numbers list
add it to the unique numbers list
else
return that number as it is a duplicate
end if
end for each
How about this:
for (i=0; i<n-1; i++) {
for (j=i+1; j<n; j++) {
if (a[i] == a[j]) {
printf("%d appears more than once\n",a[i]);
break;
}
}
}
Sure it's not the fastest, but it's simple and easy to understand, and requires
no additional memory. If n is a small number like 9, or 100, then it may well be the "best". (i.e. "Best" could mean different things: fastest to execute, smallest memory footprint, most maintainable, least cost to develop etc..)
In c:
int arr[] = {2, 3, 6, 1, 5, 4, 0, 3, 5};
int num = 0, i;
for (i=0; i < 8; i++)
num = num ^ arr[i] ^i;
Since x^x=0, the numbers that are repeated odd number of times are neutralized. Let's call the unique numbers a and b.We are left with a^b. We know a^b != 0, since a != b. Choose any 1 bit of a^b, and use that as a mask ie.choose x as a power of 2 so that x & (a^b) is nonzero.
Now split the list into two sublists -- one sublist contains all numbers y with y&x == 0, and the rest go in the other sublist. By the way we chose x, we know that the pairs of a and b are in different buckets. So we can now apply the same method used above to each bucket independently, and discover what a and b are.
I have written a small programme which finds out the number of elements not repeated, just go through this let me know your opinion, at the moment I assume even number of elements are even but can easily extended for odd numbers also.
So my idea is to first sort the numbers and then apply my algorithm.quick sort can be use to sort this elements.
Lets take an input array as below
int arr[] = {1,1,2,10,3,3,4,5,5,6,6};
the number 2,10 and 4 are not repeated ,but they are in sorted order, if not sorted use quick sort to first sort it out.
Lets apply my programme on this
using namespace std;
main()
{
//int arr[] = {2, 9, 6, 1, 1, 4, 2, 3, 5};
int arr[] = {1,1,2,10,3,3,4,5,5,6,6};
int i = 0;
vector<int> vec;
int var = arr[0];
for(i = 1 ; i < sizeof(arr)/sizeof(arr[0]); i += 2)
{
var = var ^ arr[i];
if(var != 0 )
{
//put in vector
var = arr[i-1];
vec.push_back(var);
i = i-1;
}
var = arr[i+1];
}
for(int i = 0 ; i < vec.size() ; i++)
printf("value not repeated = %d\n",vec[i]);
}
This gives the output:
value not repeated= 2
value not repeated= 10
value not repeated= 4
Its simple and very straight forward, just use XOR man.
for(i=1;i<=n;i++) {
if(!(arr[i] ^ arr[i+1]))
printf("Found Repeated number %5d",arr[i]);
}
Here is an algorithm that uses order statistics and runs in O(n).
You can solve this by repeatedly calling SELECT with the median as parameter.
You also rely on the fact that After a call to SELECT,
the elements that are less than or equal to the median are moved to the left of the median.
Call SELECT on A with the median as the parameter.
If the median value is floor(n/2) then the repeated values are right to the median. So you continue with the right half of the array.
Else if it is not so then a repeated value is left to the median. So you continue with the left half of the array.
You continue this way recursively.
For example:
When A={2, 3, 6, 1, 5, 4, 0, 3, 5} n=9, then the median should be the value 4.
After the first call to SELECT
A={3, 2, 0, 1, <3>, 4, 5, 6, 5} The median value is smaller than 4 so we continue with the left half.
A={3, 2, 0, 1, 3}
After the second call to SELECT
A={1, 0, <2>, 3, 3} then the median should be 2 and it is so we continue with the right half.
A={3, 3}, found.
This algorithm runs in O(n+n/2+n/4+...)=O(n).
What about using the https://en.wikipedia.org/wiki/HyperLogLog?
Redis does http://redis.io/topics/data-types-intro#hyperloglogs
A HyperLogLog is a probabilistic data structure used in order to count unique things (technically this is referred to estimating the cardinality of a set). Usually counting unique items requires using an amount of memory proportional to the number of items you want to count, because you need to remember the elements you have already seen in the past in order to avoid counting them multiple times. However there is a set of algorithms that trade memory for precision: you end with an estimated measure with a standard error, in the case of the Redis implementation, which is less than 1%. The magic of this algorithm is that you no longer need to use an amount of memory proportional to the number of items counted, and instead can use a constant amount of memory! 12k bytes in the worst case, or a lot less if your HyperLogLog (We'll just call them HLL from now) has seen very few elements.
Well using the nested for loop and assuming the question is to find the number occurred only twice in an array.
def repeated(ar,n):
count=0
for i in range(n):
for j in range(i+1,n):
if ar[i] == ar[j]:
count+=1
if count == 1:
count=0
print("repeated:",ar[i])
arr= [2, 3, 6, 1, 5, 4, 0, 3, 5]
n = len(arr)
repeated(arr,n)
Why should we try out doing maths ( specially solving quadratic equations ) these are costly op . Best way to solve this would be t construct a bitmap of size (n-3) bits , i.e, (n -3 ) +7 / 8 bytes . Better to do a calloc for this memory , so every single bit will be initialized to 0 . Then traverse the list & set the particular bit to 1 when encountered , if the bit is set to 1 already for that no then that is the repeated no .
This can be extended to find out if there is any missing no in the array or not.
This solution is O(n) in time complexity

Resources