I'm running a Fortran code which performs a stochastic simulation of a marked Poisson cluster process. In practice, event properties (eg. time of occurrences) are generated by inversion method, i.e. by random sampling of the cumulative distribution function.
Because of the Poissonian randomness, I expect each generated sequence to be different, but this is not the case. I guess the reason is that the seed for the pseudorandom number generator is the same at each simulation.
I do not know Fortran, so I have no idea how to solve this issue. Here is the part of the code involved with the pseudorandom number generator, any idea?
subroutine pseud0(r)
c generation of pseudo-random numbers
c data ir/584287/
data ir/574289/
ir=ir*48828125
if(ir) 10,20,20
10 ir=(ir+2147483647)+1
20 r=float(ir)*0.4656613e-9
return
end
subroutine pseudo(random)
c wichmann+hill (1982) Appl. Statist 31
data ix,iy,iz /1992,1111,1151/
ix=171*mod(ix,177)-2*(ix/177)
iy=172*mod(iy,176)-35*(iy/176)
iz=170*mod(iz,178)-63*(iz/178)
if (ix.lt.0) ix=ix+30269
if (iy.lt.0) iy=iy+30307
if (iz.lt.0) iz=iz+30323
random=mod(float(ix)/30269.0+float(iy)/30307.0+
& float(iz)/30323.0,1.0)
return
end
First, I would review the modern literature for PRNG and pick a modern implementation. Second, I would rewrite the code in modern Fortran.
You need to follow #francescalus advice and have a method for updating the seed. Without attempting to modernizing your code, here is one method for the pseud0 prng
subroutine init0(i)
integer, intent(in) :: i
common /myseed0/iseed
iseed = i
end subroutine init0
subroutine pseud0(r)
common /myseed0/ir
ir = ir * 48828125
if (ir) 10,20,20
10 ir = (ir+2147483647)+1
20 r = ir*0.4656613e-9
end subroutine pseud0
program foo
integer i
real r1
call init0(574289) ! Original seed
do i = 1, 10
call pseud0(r1)
print *, r1
end do
print *
call init0(289574) ! New seed
do i = 1, 10
call pseud0(r1)
print *, r1
end do
print *
end program foo
Related
This question already has answers here:
Why are my random numbers always the same?
(2 answers)
Random number generating in Fortran
(1 answer)
Closed last year.
I have the below Fortran code:
program Looops
implicit none
integer, parameter:: PPPP = 3.1415
real*8 , Dimension(:) , allocatable ::dkk25,dkk26,dkk27,dkk28
integer:: n_38
Allocate(dkk25(40))
Allocate(dkk26(40))
Allocate(dkk27(40))
Allocate(dkk28(40))
call RANDOM_NUMBER(dkk25)
call RANDOM_NUMBER(dkk26)
dkk27(:) = sqrt(-2*log((dkk25(:))))*cos(2*pppp*(dkk26(:)))
do n_38 = 1 , 40
dkk28(n_38) = ((dkk27(n_38)-(sum(dkk27)/40))**2)/(40-1)
end do
print*,dkk25
end program Looops
In each run of this code I have same value of dkk25 and dkk26.
I want to generate different random number in each run.
Use RANDOM_SEED (with no arguments).
From https://gcc.gnu.org/onlinedocs/gfortran/RANDOM_005fSEED.html :
8.225 RANDOM_SEED — Initialize a pseudo-random number sequence
Description:
Restarts or queries the state of the pseudorandom number generator used by RANDOM_NUMBER.
If RANDOM_SEED is called without arguments, it is seeded with random data retrieved from the operating system.
Or use RANDOM_INIT if your compiler supports it.
I'm writing a checkpoint function in my Monte Carlo simulation in Fortran 90/95, the compiler I'm using is ifort 18.0.2, before going through detail just to clarify the version of pseudo-random generator I'm using:
A C-program for MT19937, with initialization, improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.
Code converted to Fortran 95 by Josi Rui Faustino de Sousa
Date: 2002-02-01
See mt19937 for the source code.
The general structure of my Monte Carlo simulation code is given below:
program montecarlo
call read_iseed(...)
call mc_subroutine(...)
end
Within the read_iseed
subroutine read_iseed(...)
use mt19937
if (Restart == 'n') then
call system('od -vAn -N4 -td4 < /dev/urandom > '//trim(IN_ISEED)
open(unit=7,file=trim(IN_ISEED),status='old')
read(7,*) i
close(7)
!This is only used to initialise the PRNG sequence
iseed = abs(i)
else if (Restart == 'y') then
!Taking seed value from the latest iteration of previous simulation
iseed = RestartSeed
endif
call init_genrand(iseed)
print *, 'first pseudo-random value ',genrand_real3(), 'iseed ',iseed
return
end subroutine
Based on my understanding, if the seed value holds a constant, the PRNG should be able to reproduce the pseudo-random sequence every time?
In order to prove this is the case, I ran two individual simulations by using the same seed value, they are able to reproduce the exact sequence. So far so good!
Based on the previous test, I'd further assume that regardless the number of times init_genrand() being called within one individual simulation, the PRNG should also be able to reproduce the pseudo-random value sequence? So I did a little modification to my read_iseed() subroutine
subroutine read_iseed(...)
use mt19937
if (Restart == 'n') then
call system('od -vAn -N4 -td4 < /dev/urandom > '//trim(IN_ISEED)
open(unit=7,file=trim(IN_ISEED),status='old')
read(7,*) i
close(7)
!This is only used to initialise the PRNG sequence
iseed = abs(i)
else if (Restart == 'y') then
!Taking seed value from the latest iteration of the previous simulation
iseed = RestartSeed
endif
call init_genrand(iseed)
print *, 'first time initialisation ',genrand_real3(), 'iseed ',iseed
call init_genrand(iseed)
print *, 'second time initialisation ',genrand_real3(), 'iseed ',iseed
return
end subroutine
The output is surprisingly not the case I thought would be, by all means iseed outputs are identical in between two initializations, however, genrand_real3() outputs are not identical.
Because of this unexpected result, I struggled with resuming the simulation at an arbitrary state of the system since the simulation is not reproducing the latest configuration state of the system I'm simulating.
I'm not sure if I've provided enough information, please let me know if any part of this question needs to be more specific?
From the source code you've provided (See [mt19937]{http://web.mst.edu/~vojtat/class_5403/mt19937/mt19937ar.f90} for the source code.), the init_genrand does not clear the whole state.
There are 3 critical state variables:
integer( kind = wi ) :: mt(n) ! the array for the state vector
logical( kind = wi ) :: mtinit = .false._wi ! means mt[N] is not initialized
integer( kind = wi ) :: mti = n + 1_wi ! mti==N+1 means mt[N] is not initialized
The first one is the "array for the state vector", second one is a flag that ensures we don't start with uninitialized array, and the third one is some position marker, as I guess from the condition stated in the comment.
Looking at subroutine init_genrand( s ), it sets mtinit flag, and fills the mt() array from 1 upto n. Alright.
Looking at genrand_real3 it's based on genrand_int32.
Looking at genrand_int32, it starts up with
if ( mti > n ) then ! generate N words at one time
! if init_genrand() has not been called, a default initial seed is used
if ( .not. mtinit ) call init_genrand( seed_d )
and does its arithmetic magic and then starts getting the result:
y = mt(mti)
mti = mti + 1_wi
so.. mti is a positional index in the 'state array', and it is incremented by 1 after each integer read from the generator.
Back to init_genrand - remember? it have been resetting the array mt() but it has not resetted the MTI back to its starting mti = n + 1_wi.
I bet this is the cause of the phenomenon you've observed, since after re-initializing with the same seed, the array would be filled with the same set of values, but later the int32 generator would read from a different starting point. I doubt it was intended, so it's probably a tiny bug easy to overlook.
I am relatively new to Modelica (Dymola-environment) and I am getting very desperate/upset that I cannot solve such a simple problem as a random number generation in Modelica and I hope that you can help me out.
The simple function random produces a random number between 0 and 1 with an input seed seedIn[3] and produces the output seed seedOut[3] for the next time step or event. The call
(z,seedOut) = random(seedIn);
works perfectly fine.
The problem is that I cannot find a way in Modelica to compute this assignment over time by using the seedOut[3] as the next seedIn[3], which is very frustrating.
My simple program looks like this:
*model Randomgenerator
Real z;
Integer seedIn[3]( start={1,23,131},fixed=true), seedOut[3];
equation
(z,seedOut) = random(seedIn);
algorithm
seedIn := seedOut;
end Randomgenerator;*
I have tried nearly all possibilities with algorithm assignments, initial conditions and equations but none of them works. I just simply want to use seedOut in the next time step. One problem seems to be that when entering into the algorithm section, neither the initial conditions nor the values from the equation section are used.
Using the 'sample' and 'reinit' functions the code below will calculate a new random number at the frequency specified in 'sample'. Note the way of defining the "start value" of seedIn.
model Randomgenerator
Real seedIn[3] = {1,23,131};
Real z;
Real[3] seedOut;
equation
(z,seedOut) = random(seedIn);
when sample(1,1) then
reinit(seedIn,pre(seedOut));
end when;
end Randomgenerator;
The 'pre' function allows the use of the previous value of the variable. If this was not used, the output 'z' would have returned a constant value. Two things regarding the 'reinint' function, it requires use of 'when' and requires 'Real' variables/expressions hence seedIn and seedOut are now defined as 'Real'.
The simple "random" generator I used was:
function random
input Real[3] seedIn;
output Real z;
output Real[3] seedOut;
algorithm
seedOut[1] :=seedIn[1] + 1;
seedOut[2] :=seedIn[2] + 5;
seedOut[3] :=seedIn[3] + 10;
z :=(0.1*seedIn[1] + 0.2*seedIn[2] + 0.3*seedIn[3])/(0.5*sum(seedIn));
end random;
Surely there are other ways depending on the application to perform this operation. At least this will give you something to start with. Hope it helps.
I am trying to use ran1 from Numerical Recipes in my FORTRAN 90 code. I think a common way is to compile the old subroutine separately, then use the object file. But here I want to know what change is necessary to use it directly in my code.
FUNCTION ran1(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ran1,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,
! NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
! “Minimal” random number generator of Park and Miller with Bays-Durham shuffle and
! added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
! the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
! alter idum between successive deviates in a sequence. RNMX should approximate the largest
! floating value that is less than 1.
INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DATA iv /NTAB*0/, iy /0/
iy = 0
if (idum.le.0.or.iy.eq.0) then !Initialize.
idum=max(-idum,1)
! Be sure to prevent idum = 0.
do 11 j=NTAB+8,1,-1
! Load the shuffle table (after 8 warm-ups).
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
if (j.le.NTAB) iv(j)=idum! Compute idum=mod(IA*idum,IM) without overflows by
enddo 11
iy=iv(1)
endif
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
! Compute idum=mod(IA*idum,IM) without overflows by
if (idum.lt.0) idum=idum+IM ! Schrage’s method.
j=1+iy/NDIV
iy=iv(j) ! Output previously stored value and refill the shuffle table.
iv(j)=idum
ran1=min(AM*iy,RNMX) ! Because users don’t expect endpoint values.
return
END
Your code is malformed. It looks like you copied it manually from the book, but not exactly. The second problem is actually present even in the book.
Firstly, there should be a line continuation and not a comment in the parameter statement on the second and third line
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, &
NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
(converted to free form, see the book for the original)
Secondly, the loop is a strange combination of a do loop with numeric label and a do loop with end do:
do 11 j=NTAB+8,1,-1
...
enddo 11
should be
do j=NTAB+8,1,-1
...
enddo
or
do 11 j=NTAB+8,1,-1
...
11 continue
There may be more problems present.
I have a Fortran program where I specify the kind of the numeric data types in an attempt to retain a minimum level of precision, regardless of what compiler is used to build the program. For example:
integer, parameter :: rsp = selected_real_kind(4)
...
real(kind=rsp) :: real_var
The problem is that I have used MPI to parallelize the code and I need to make sure the MPI communications are specifying the same type with the same precision. I was using the following approach to stay consistent with the approach in my program:
call MPI_Type_create_f90_real(4,MPI_UNDEFINED,rsp_mpi,mpi_err)
...
call MPI_Send(real_var,1,rsp_mpi,dest,tag,MPI_COMM_WORLD,err)
However, I have found that this MPI routine is not particularly well-supported for different MPI implementations, so it's actually making my program non-portable. If I omit the MPI_Type_create routine, then I'm left to rely on the standard MPI_REAL and MPI_DOUBLE_PRECISION data types, but what if that type is not consistent with what selected_real_kind picks as the real type that will ultimately be passed around by MPI? Am I stuck just using the standard real declaration for a datatype, with no kind attribute and, if I do that, am I guaranteed that MPI_REAL and real are always going to have the same precision, regardless of compiler and machine?
UPDATE:
I created a simple program that demonstrates the issue I see when my internal reals have higher precision than what is afforded by the MPI_DOUBLE_PRECISION type:
program main
use mpi
implicit none
integer, parameter :: rsp = selected_real_kind(16)
integer :: err
integer :: rank
real(rsp) :: real_var
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank,err)
if (rank.eq.0) then
real_var = 1.123456789012345
call MPI_Send(real_var,1,MPI_DOUBLE_PRECISION,1,5,MPI_COMM_WORLD,err)
else
call MPI_Recv(real_var,1,MPI_DOUBLE_PRECISION,0,5,MPI_COMM_WORLD,&
MPI_STATUS_IGNORE,err)
end if
print *, rank, real_var
call MPI_Finalize(err)
end program main
If I build and run with 2 cores, I get:
0 1.12345683574676513672
1 4.71241976735884452383E-3998
Now change the 16 to a 15 in selected_real_kind and I get:
0 1.1234568357467651
1 1.1234568357467651
Is it always going to be safe to use selected_real_kind(15) with MPI_DOUBLE_PRECISION no matter what machine/compiler is used to do the build?
Use the Fortran 2008 intrinsic STORAGE_SIZE to determine the number bytes that each number requires and send as bytes. Note that STORAGE_SIZE returns the size in bits, so you will need to divide by 8 to get the size in bytes.
This solution works for moving data but does not help you use reductions. For that you will have to implement a user-defined reduction operation. If that's important to you, I will update my answer with the details.
For example:
program main
use mpi
implicit none
integer, parameter :: rsp = selected_real_kind(16)
integer :: err
integer :: rank
real(rsp) :: real_var
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank,err)
if (rank.eq.0) then
real_var = 1.123456789012345
call MPI_Send(real_var,storage_size(real_var)/8,MPI_BYTE,1,5,MPI_COMM_WORLD,err)
else
call MPI_Recv(real_var,storage_size(real_var)/8,MPI_BYTE,0,5,MPI_COMM_WORLD,&
MPI_STATUS_IGNORE,err)
end if
print *, rank, real_var
call MPI_Finalize(err)
end program main
I confirmed that this change corrects the problem and the output I see is:
0 1.12345683574676513672
1 1.12345683574676513672
Not really an answer, but we have the same problem and use something like this:
!> Number of digits for single precision numbers
integer, parameter, public :: single_prec = 6
!> Number of digits for double precision numbers
integer, parameter, public :: double_prec = 15
!> Number of digits for extended double precision numbers
integer, parameter, public :: xdble_prec = 18
!> Number of digits for quadruple precision numbers
integer, parameter, public :: quad_prec = 33
integer, parameter, public :: rk_prec = double_prec
!> The kind to select for default reals
integer, parameter, public :: rk = selected_real_kind(rk_prec)
And then have an initialization routine where we do:
!call mpi_type_create_f90_real(rk_prec, MPI_UNDEFINED, rk_mpi, iError)
!call mpi_type_create_f90_integer(long_prec, long_k_mpi, iError)
! Workaround shitty MPI-Implementations.
select case(rk_prec)
case(single_prec)
rk_mpi = MPI_REAL
case(double_prec)
rk_mpi = MPI_DOUBLE_PRECISION
case(quad_prec)
rk_mpi = MPI_REAL16
case default
write(*,*) 'unknown real type specified for mpi_type creation'
end select
long_k_mpi = MPI_INTEGER8
While this is not nice, it works reasonably well, and seems to be usable on Cray, IBM BlueGene and conventional Linux Clusters.
Best thing to do is push sites and vendors to properly support this in MPI. As far as I know it has been fixed in OpenMPI and planned to be fixed in MPICH by 3.1.1. See OpenMPI Tickets 3432 and 3435 as well as MPICH Tickets 1769 and 1770.
How about:
integer, parameter :: DOUBLE_PREC = kind(0.0d0)
integer, parameter :: SINGLE_PREC = kind(0.0e0)
integer, parameter :: MYREAL = DOUBLE_PREC
if (MYREAL .eq. DOUBLE_PREC) then
MPIREAL = MPI_DOUBLE_PRECISION
else if (MYREAL .eq. SINGLE_PREC) then
MPIREAL = MPI_REAL
else
print *, "Erorr: Can't figure out MPI precision."
STOP
end if
and use MPIREAL instead of MPI_DOUBLE_PRECISION from then on.