Calculate Reverse Modulus - bash

I'm trying to calculate the value of x in this equation:
(4 + 11111111/x)mod95 = 54
I've tried solving it using the top answer here: how to calculate reverse modulus
However, it provides the lowest possible value for x (145, if helpful to anyone.)
In addition, whenever 11111111/x is calculated, it removes any decimal places from the answer.
Thanks!

I guess you are referring to the bash code
(4 + 11111111 / x) % 95 # == 54
Where / yields the int part of the division.
If you simplify that, an x that sattisfies this, also sattisfies:
(11111111 / x) % 95 # == 50
And so also:
(11111111 / x) == 95 * i + 50 # for integer i
If we further look at the division that rounds towards the next lowest integer, we have
r= 11111111 % x
(11111111 - r)/x == 95*i + 50 # for integer i
(11111111 - r) == 5*(19*i + 10)*x # for integer i
So it can be rewritten as two conditions, which have to be met by any solution at once:
2222222 = (19*i + 10)*x
0 < 11111111 % x < x-1 # -1 because 11111111 % 5 == 1 and 11111111 % x < x
In other words, to find x you just need to check the two conditions for all divisors of 2222222.
In general, if you have questions like:
(a + b/x) mod m = c
transform it to
g=gcd(m, c-a)
c'= (c-a)/g
(b/x) mod m = g*c'
m= g*m'
b/x = g*c' + g*m'*i
r= b%x
r'= b%g
# now search for an x that divides (b-r')/g
# and complies with the following conditions:
(b-r')/g = (c' + m'*i)*x
r' <= r < x-r'

Related

Given 2 positive integer x, y has 10^5 digits in hexadecimal. What is the sum of digits of product of all integer in range [x, y]?

Given 2 positive integer x, y has 105 digits in hexadecimal (x, y could be FFF....F (105 in length)). Do changes:
Calculate the product of all integer that in range [x, y].
Calculate the sum until the result has only 1 digit.
Print that digit.
For example:
All integer in range [x, y] = {1BA, 1BB, 1BC, 1BD} (in Decimal is {442, 443, 444, 445})
The product of all integer is 1BA x 1BB x 1BC x 1BD = 901F21AE8 (in Decimal is 38687349480)
Sum the digit until the result has only 1 digit:
901F21AE8 → 9 + 0 + 1 + F + 2 + 1 + A + E + 8 = 3C
3C → 3 + C = F
Print "F"
I tried the bruteforce way (do exactly what it said) but I got time limit exceeded. Is there any better algorithm?
You can speed up your calculations by the "Divide and Conquer" algorithm using multithreading. Divide your numbers into blocks and recursively multiply all the numbers in each block together.

How to find if X can be represented as the summation any Y distinct positive integers?

For example if
X= 10 , Y= 3
2,3,5 and 1,4,6 are possible
However for Y=10
This is not possible as we know we can't represent 10 as sum of 10 distinct positive integers.
Is there a more specific way to get the results?
Any X greater than or equal to S = 1 + 2 + ... + Y = Y*(Y+1)/2 can be so represented. Indeed,
X = 1 + 2 + ... + (Y-1) + (Y + X - S)
Any X smaller than S obviously cannot be.

Efficient algorithm to find the n-th digit in the string 112123123412345

What is an efficient algorithm for finding the digit in nth position in the following string
112123123412345123456 ... 123456789101112 ...
Storing the entire string in memory is not feasible for very large n, so I am looking for an algorithm that can find the nth digit in the above string which works if n is very large (i.e. an alternative to just generating the first n digits of the string).
There are several levels here: the digit is part of a number x, the number x is part of a sequence 1,2,3...x...y and that sequence is part of a block of sequences that lead up to numbers like y that have z digits. We'll tackle these levels one by one.
There are 9 numbers with 1 digit:
first: 1 (sequence length: 1 * 1)
last: 9 (sequence length: 9 * 1)
average sequence length: (1 + 9) / 2 = 5
1-digit block length: 9 * 5 = 45
There are 90 numbers with 2 digits:
first: 10 (sequence length: 9 * 1 + 1 * 2)
last: 99 (sequence length: 9 * 1 + 90 * 2)
average sequence length: 9 + (2 + 180) / 2 = 100
2-digit block length: 90 * 100 = 9000
There are 900 numbers with 3 digits:
first: 100 (sequence length: 9 * 1 + 90 * 2 + 1 * 3)
last: 999 (sequence length: 9 * 1 + 90 * 2 + 900 * 3)
average sequence length: 9 + 180 + (3 + 2,700) / 2 = 1,540.5
3-digit block length: 900 * 1,540.5 = 1,386,450
If you continue to calculate these values, you'll find which block (of sequences up to how many digits) the digit you're looking for is in, and you'll know the start and end point of this block.
Say you want the millionth digit. You find that it's in the 3-digit block, and that this block is located in the total sequence at:
start of 3-digit block: 45 + 9,000 + = 9,045
start of 4-digit block: 45 + 9,000 + 1,386,450 = 1,395,495
So in this block we're looking for digit number:
1,000,000 - 9,045 = 990,955
Now you can use e.g. a binary search to find which sequence the 990,955th digit is in; you start with the 3-digit number halfway in the 3-digit block:
first: 100 (sequence length: 9 + 180 + 1 * 3)
number: 550 (sequence length: 9 + 180 + 550 * 3)
average sequence length: 9 + 180 + (3 + 1650) / 2 = 1,015.5
total sequence length: 550 * 1,015.5 = 558,525
Which is too small; so we try 550 * 3/4 = 825, see if that is too small or large, and go up or down in increasingly smaller steps until we know which sequence the 990,995th digit is in.
Say it's in the sequence for the number n; then we calculate the total length of all 3-digit sequences up to n-1, and this will give us the location of the digit we're looking for in the sequence for the number n. Then we can use the numbers 9*1, 90*2, 900*3 ... to find which number the digit is in, and then what the digit is.
We have three types of structures that we would like to be able to search on, (1) the sequence of concatenating d-digit numbers, for example, single digit:
123456...
or 3-digit:
100101102103
(2) the rows in a section,
where each section builds on the previous section added to a prefix. For example, section 1:
1
12
123
...
or section 3:
1234...10111213...100
1234...10111213...100102
1234...10111213...100102103
<----- prefix ----->
and (3) the full sections, although the latter we can just enumerate since they grow exponentially and help build our section prefixes. For (1), we can use simple division if we know the digit count; for (2), we can binary search.
Here's Python code that also answers the big ones:
def getGreatest(n, d, prefix):
rows = 9 * 10**(d - 1)
triangle = rows * (d + rows * d) // 2
l = 0
r = triangle
while l < r:
mid = l + ((r - l) >> 1)
triangle = mid * prefix + mid * (d + mid * d) // 2
prevTriangle = (mid-1) * prefix + (mid-1) * (d + (mid-1) * d) // 2
nextTriangle = (mid+1) * prefix + (mid+1) * (d + (mid+1) * d) // 2
if triangle >= n:
if prevTriangle < n:
return prevTriangle
else:
r = mid - 1
else:
if nextTriangle >= n:
return triangle
else:
l = mid
return l * prefix + l * (d + l * d) // 2
def solve(n):
debug = 1
d = 0
p = 0.1
prefixes = [0]
sections = [0]
while sections[d] < n:
d += 1
p *= 10
rows = int(9 * p)
triangle = rows * (d + rows * d) // 2
section = rows * prefixes[d-1] + triangle
sections.append(sections[d-1] + section)
prefixes.append(prefixes[d-1] + rows * d)
section = sections[d - 1]
if debug:
print("section: %s" % section)
n = n - section
rows = getGreatest(n, d, prefixes[d - 1])
if debug:
print("rows: %s" % rows)
n = n - rows
d = 1
while prefixes[d] < n:
d += 1;
if prefixes[d] == n:
return 9;
prefix = prefixes[d - 1]
if debug:
print("prefix: %s" % prefix)
n -= prefix
if debug:
print((n, d, prefixes, sections))
countDDigitNums = n // d
remainder = n % d
prev = 10**(d - 1) - 1
num = prev + countDDigitNums
if debug:
print("num: %s" % num)
if remainder:
return int(str(num + 1)[remainder - 1])
else:
s = str(num);
return int(s[len(s) - 1])
ns = [
1, # 1
2, # 1
3, # 2
100, # 1
2100, # 2
31000, # 2
999999999999999999, # 4
1000000000000000000, # 1
999999999999999993, # 7
]
for n in ns:
print(n)
print(solve(n))
print('')
Well, you have a series of sequences each increasing by a single number.
If you have "x" of them, then the sequences up to that point occupy x * (x + 1) / 2 character positions. Or, another way of saying this is that the "x"s sequence starts at x * (x - 1) / 2 (assuming zero-based indexing). These are called triangular numbers.
So, all you need to do is to find the "x" value where the cumulative amount is closest to a given "n". Here are three ways:
Search for a closed from solution. This exists, but the formula is rather complicated. (Here is one reference for the sum of triangular numbers.)
Pre-calculate a table in memory with values up to, say, 1,000,000. that will get you to 10^10 sizes.
Use a "binary" search and the formula. So, generate the sequence of values for 1, 2, 4, 8, and so on and then do a binary search to find the exact sequence.
Once you know the sequence where the value lies, determining the value is simply a matter of arithmetic.

Finding natural numbers having n Trailing Zeroes in Factorial

I need help with the following problem.
Given an integer m, I need to find the number of positive integers n and the integers, such that the factorial of n ends with exactly m zeroes.
I wrote this code it works fine and i get the right output, but it take way too much time as the numbers increase.
a = input()
while a:
x = []
m, n, fact, c, j = input(), 0, 1, 0, 0
z = 10*m
t = 10**m
while z - 1:
fact = 1
n = n + 1
for i in range(1, n + 1):
fact = fact * i
if fact % t == 0 and ((fact / t) % 10) != 0:
x.append(int(n))
c = c + 1
z = z - 1
for p in range(c):
print x[p],
a -= 1
print c
Could someone suggest me a more efficient way to do this. Presently, it takes 30 seconds for a test case asking for numbers with 250 trailing zeros in its factorial.
Thanks
To get number of trailing zeroes of n! efficiently you can put
def zeroes(value):
result = 0;
d = 5;
while (d <= value):
result += value // d; # integer division
d *= 5;
return result;
...
# 305: 1234! has exactly 305 trailing zeroes
print zeroes(1234)
In order to solve the problem (what numbers have n trailing zeroes in n!) you can use these facts:
number of zeroes is a monotonous function: f(x + a) >= f(x) if a >= 0.
if f(x) = y then x <= y * 5 (we count only 5 factors).
if f(x) = y then x >= y * 4 (let me leave this for you to prove)
Then implement binary search (on monotonous function).
E.g. in case of 250 zeroes we have the initial range to test [4*250..5*250] == [1000..1250]. Binary search narrows the range down into [1005..1009].
1005, 1006, 1007, 1008, 1009 are all numbers such that they have exactly 250 trainling zeroes in factorial
Edit I hope I don't spoil the fun if I (after 2 years) prove the last conjecture (see comments below):
Each 5**n within facrtorial when multiplied by 2**n produces 10**n and thus n zeroes; that's why f(x) is
f(x) = [x / 5] + [x / 25] + [x / 125] + ... + [x / 5**n] + ...
where [...] stands for floor or integer part (e.g. [3.1415926] == 3). Let's perform easy manipulations:
f(x) = [x / 5] + [x / 25] + [x / 125] + ... + [x / 5**n] + ... <= # removing [...]
x / 5 + x / 25 + x / 125 + ... + x / 5**n + ... =
x * (1/5 + 1/25 + 1/125 + ... + 1/5**n + ...) =
x * (1/5 * 1/(1 - 1/5)) =
x * 1/5 * 5/4 =
x / 4
So far so good
f(x) <= x / 4
Or if y = f(x) then x >= 4 * y Q.E.D.
Focus on the number of 2s and 5s that makes up a number. e.g. 150 is made up of 2*3*5*5, there 1 pair of 2&5 so there's one trailing zero. Each time you increase the tested number, try figuring out how much 2 and 5s are in the number. From that, adding up previous results you can easily know how much zeros its factorial contains.
For example, 15!=15*...*5*4*3*2*1, starting from 2:
Number 2s 5s trailing zeros of factorial
2 1 0 0
3 1 0 0
4 2 0 0
5 2 1 1
6 3 1 1
...
10 5 2 2
...
15 7 3 3
..
24 12 6 6
25 12 8 8 <- 25 counts for two 5-s: 25 == 5 * 5 == 5**2
26 13 8 8
..
Refer to Peter de Rivaz's and Dmitry Bychenko's comments, they have got some good advices.

Fast modulo 3 or division algorithm?

is there a fast algorithm, similar to power of 2, which can be used with 3, i.e. n%3.
Perhaps something that uses the fact that if sum of digits is divisible by three, then the number is also divisible.
This leads to a next question. What is the fast way to add digits in a number? I.e. 37 -> 3 +7 -> 10
I am looking for something that does not have conditionals as those tend to inhibit vectorization
thanks
4 % 3 == 1, so (4^k * a + b) % 3 == (a + b) % 3. You can use this fact to evaluate x%3 for a 32-bit x:
x = (x >> 16) + (x & 0xffff);
x = (x >> 10) + (x & 0x3ff);
x = (x >> 6) + (x & 0x3f);
x = (x >> 4) + (x & 0xf);
x = (x >> 2) + (x & 0x3);
x = (x >> 2) + (x & 0x3);
x = (x >> 2) + (x & 0x3);
if (x == 3) x = 0;
(Untested - you might need a few more reductions.) Is this faster than your hardware can do x%3? If it is, it probably isn't by much.
This comp.compilers item has a specific recommendation for computing modulo 3.
An alternative, especially if the maximium size of the dividend is modest, is to multiply by the reciprocal of 3 as a fixed-point value, with enough bits of precision to handle the maximum size dividend to compute the quotient, and then subtract 3*quotient from the the dividend to get the remainder. All of these multiplies can be implemented with a fixed sequence of shifts-and-adds. The number of instructions will depend on the bit pattern of the reciprocal. This works pretty well when the dividend max is modest in size.
Regarding adding digits in the number... if you want to add the decimal digits, you're going to end up doing what amounts to a number-conversion-to-decimal, which involves divide by 10 somewhere. If you're willing to settle for adding up the digits in base2, you can do this with an easy shift-right and add loop. Various clever tricks can be used to do this in chunks of N bits to speed it up further.
Not sure for your first question, but for your second, you can take advantage of the % operator and integer division:
int num = 12345;
int sum = 0;
while (num) {
sum += num % 10;
num /= 10;
}
This works because 12345 % 10 = 5, 12345 / 10 = 1234 and keep going until num == 0
If you are happy with 1 byte integer division, here's a trick. You could extend it to 2 bytes, 4 bytes, etc.
Division is essentially multiplication by 0.3333. If you want to simulate floating point arithmetic then you need closest approximation for the 256 (decimal) boundary. This is 85, because 85 / 256 = 0.332. So if you multiply your value by 85, you should be getting a value close to the result in the high 8 bits.
Multiplying a value with 85 fast is easy. n * 85 = n * 64 + n * 16 + n * 4 + n. Now all these factors are powers of 2 so you can calculate n * 4 by shifting, then use this value to calculate n * 16, etc. So you have max 5 shifts and 4 additions.
As said, this'll give you approximation. To know how good it is you'll need to check the lower byte of the next value using this rule
n ... is the 16 bit number you want to divide
approx = HI(n*85)
if LO(n*85)>LO((n+1)*85)THEN approx++
And that should do the trick.
Example 1:
3 / 3 =?
3 * 85 = 00000000 11111111 (approx=0)
4 * 85 = 00000001 01010100 (LO(3*85)>LO(4*85)=>approx=1)
result approx=1
Example 2:
254 / 3
254 * 85 = 01010100 01010110 (approx=84)
255 * 85 = 01010100 10101011 (LO(254*85)<LO(255*85), don't increase)
result approx=84
If you're dealing with big-integers, one very fast method is realizing the fact for all
bases 10 +/- multiple-of-3
i.e.
4,7,10,13,16,19,22…. etc
All you have to do is count the digits, then % 3. something like :
** note : x ^ y is power, not bit-wise XOR,
x ** y being the python equivalent
function mod3(__,_) {
#
# can handle bases
# { 4, 7,10,13,16,19,
# 22,25,28,31,34 } w/o conversion
#
# assuming base digits :
#
# 0-9A-X for any base,
# or 0-9a-f for base-16
return \
(length(__)<=+((_+=++_+_)+_^_)\
&& (__~"^[0-9]+$") )\
? (substr(__,_~_,_+_*_+_)+\
substr(__,++_*_--))%+_\
:\
(substr("","",gsub(\
"[_\3-0369-=CFILORUXcf-~]+","",__))\
+ length(__) \
+ gsub("[258BbEeHKNQTW]","",__))%+_
}
This isn't the fastest method possible, but it's one of the more agile methods.

Resources