Probability and events - probability

Using only a coin, a regular deck of playing cards and a 6 sided die, invent a game of chance where you have a 1 in 20 chance of winning in any given turn or attempt. You do not have to use all the items listed above, but you cannot use anything more. you may use them multiple times and/or combine them in each attempt. For example, "a game is played by picking a card from the deck and tossing a coin twice." You win if you get 2 tails and a spade. Probability of winning is 1 /16. Describe your event, how you play and win the game, and show with calculations how the probability of winning = 1/20?

I think you'd get a better answer on mathematical site rather than a programming one. But here's my attempt:
It depends on what sort of rules you allow.
If you allow rules like: throw the dice; if its 1,2,3,4 you lose; if its 5 you win; if its a 6 repeat, then a game with a 1/20 chance of winning would be: throw a coin twice, if you don't get two heads you lose, if you do get two heads throw the dice as above.
If you don't allow such recursive rules then there is no such game. All the elementary events (throwing a particular side of the coin, picking a particular card, throwing a particular value of the dice) have probabilities that can be expressed as N/D where N and D are integers, and D can be factorised as a product of powers of 2,3 and 13. All events made by ands and ors and selections will have probabilities of this form, since they will be finite sums of finite products of probabilities of elementary events. But 1/20 isn't of this form, because 20 = 2*2*5

Related

probability of winning a special sing-elimination tournament using dynamic programming and bitmask

Let's say we have N teams in a tournament and based on historical data we know what is the probability of each team winning any other team .Lets put all the probabilities in a matrix called P . P[a][b] is the probability team a winning team b. It is obvious that P[a][a] = 0 and P[a][b] = 1-P[b][a].
In this tournament at every round, two of teams compete against each other and the loser is eliminated. This two team are chosen randomly (with equal possibility of each team being picked). So at the first round we have n teams, next n-1 teams and so on until only one team remains and becomes the champion. What is the probability of each team becoming the champion? ( 1 <= N <= 18).
At first when I didn't know how to approach the problem but after some reading and search and keeping in mind that max n is 18 I figured at that using Dynamic programming and Bitmask is the way to go. How ever I couldn't figure at a solution. Here are my problems:
I have really hard time to figure at what are the sub problems and what sub problems should not be recomputed, basically I can't find a well defined recursive ( or not recursive) equation for the problem
In bitmask+dp problems we usually define something like dp[mask][n] or dp[n][mask]. I tried different approaches to define the mask but since the general solution is not clear to me there was no success
Some guidance on this two problems would be very helpful.
This is not really a dynamic programming problem.
If you have a vector V that gives the probability of each player being in the game after n rounds, then you can calculate the player probabilities for n+1 rounds by:
V'i = 2/((18-n)(17-n)) * sum over all j!=i of [ViVjPi,j]
That first factor is the probability that any given available match will be chosen, which depends on the number of previous rounds, because each successive round has fewer players to match up.
The second part is the probability of the players being available for each match, times the probability that the current player will win.
Just do this calculation 17 times to get the player probabilities after 17 rounds, which is the answer you're looking for. You can even drop that first factor, and fix it at the end by normalizing the vector so that the probabilities sum to 1.

Find all possible combinations of a scores consistent with data

So I've been working on a problem in my spare time and I'm stuck. Here is where I'm at. I have a number 40. It represents players. I've been given other numbers 39, 38, .... 10. These represent the scores of the first 30 players (1 -30). The rest of the players (31-40) have some unknown score. What I would like to do is find how many combinations of the scores are consistent with the given data.
So for a simpler example: if you have 3 players. One has a score of 1. Then the number of possible combinations of the scores is 3 (0,2; 2,0; 1,1), where (a,b) stands for the number of wins for player one and player two, respectively. A combination of (3,0) wouldn't work because no person can have 3 wins. Nor would (0,0) work because we need a total of 3 wins (and wouldn't get it with 0,0).
I've found the total possible number of games. This is the total number of games played, which means it is the total number of wins. (There are no ties.) Finally, I have a variable for the max wins per player (which is one less than the total number of players. No player can have more than that.)
I've tried finding the number of unique combinations by spreading out N wins to each player and then subtracting combinations that don't fit the criteria. E.g., to figure out many ways to give 10 victories to 5 people with no more than 4 victories to each person, you would use:
C(14,4) - C(5,1)*C(9,4) + C(5,2)*C(4,4) = 381. C(14,4) comes from the formula C(n+k-1, k-1) (google bars and strips, I believe). The next is picking off the the ones with the 5 (not allowed), but adding in the ones we subtracted twice.
Yeah, there has got to be an easier way. Lastly, the numbers get so big that I'm not sure that my computer can adequately handle them. We're talking about C(780, 39), which is 1.15495183 × 10^66. Regardless, there should be a better way of doing this.
To recap, you have 40 people. The scores of the first 30 people are 10 - 39. The last ten people have unknown scores. How many scores can you generate that are meet the criteria: all the scores add up to total possible wins and each player gets no more 39 wins.
Thoughts?
Generating functions:
Since the question is more about math, but still on a programming QA site, let me give you a partial solution that works for many of these problems using a symbolic algebra (like Maple of Mathematica). I highly recommend that you grab an intro combinatorics book, these kind of questions are answered there.
First of all the first 30 players who score 10-39 (with a total score of 735) are a bit of a red herring - what we would like to do is solve the other problem, the remaining 10 players whose score could be in the range of (0...39).
If we think of the possible scores of the players as the polynomial:
f(x) = x^0 + x^1 + x^2 + ... x^39
Where a value of x^2 is the score of 2 for example, consider what this looks like
f(x)^10
This represents the combined score of all 10 players, ie. the coefficent of x^385 is 2002, which represents the fact that there are 2002 ways for the 10 players to score 385. Wolfram Alpha (a programming lanuage IMO) can evaluate this for us.
If you'd like to know how many possible ways of doing this, just substitute in x=1 in the expression giving 8,140,406,085,191,601, which just happens to be 39^10 (no surprise!)
Why is this useful?
While I know it may seem silly to some to set up all this machinery for a simple problem that can be solved on paper - the approach of generating functions is useful when the problem gets messy (and asymptotic analysis is possible). Consider the same problem, but now we restrict the players to only score prime numbers (2,3,5,7,11,...). How many possible ways can the 10 of them score a specific number, say 344? Just modify your f(x):
f(x) = x^2 + x^3 + x^5 + x^7 + x^11 ...
and repeat the process! (I get [x^344]f(x)^10 = 1390).

Finding subsets being used at most k times

Every now and then I read all those conspiracy theories about Lotto-based games being controlled and a computer browsing through the combinations chosen by the players and determining the non-used subset. It got me thinking - how would such algorithm have to work in order to determine such subsets really efficiently? Finding non-used numbers is definitely crossed out as is finding the least used because it's not necesserily providing us with a solution. Also, going deeper, how could an algorithm efficiently choose such a subset that it was used some k times by the players? Saying more formally:
We are given a set of 50 numbers 1 to 50. In the draw 6 numbers are picked.
INPUT: m subsets each consisting of 6 distinct numbers 1 to 50 each,
integer k (0<=k) being the maximum players having all of their 6
numbers correct.
OUTPUT: Subsets which make not more than k players win the jackpot ('winning' means all the numbers they chose were picked in the draw).
Is there any efficient algorithm which could calculate this without using a terrabyte HDD to store all the encounters of every possible 50!/(44!*6!) in the pessimistic case? Honestly, I can't think of any.
If I wanted to run such a conspirancy I would first of all acquire the list of submissions by players. Then I would generate random lottery selections and see how many winners would be produced by each such selection. Then just choose the random lottery selection most attractive to me. There is little point doing anything more sophisticated, because that is probably already powerful enough to be noticed by staticians.
If you want to corrupt the lottery it would probably be easier and safer to select a few competitors you favour and have them win the lottery. In (the book) "1984" I think the state simply announced imaginary lottery winners, with the announcement in each area announcing somebody outside the area. One of the ideas in "The Beckoning Lady" by Margery Allingham is of a gang who attempt to set up a racecourse so they can rig races to allow them to disguise bribes as winnings.
First of all, the total number of combinations (choosing 6 from 50) is not very large. It is about 16 million which can be easily handled.
For each combination keep a count of number of people who played it. While declaring a winner choose the combination that has less than k plays.
If the number within each subset are sorted, then you can treat your subsets as strings - sort them in lexicographical order, then it is easy to count how many players selected each subset (and which subsets were not selected at all). So the time is proportional to the number of players and not the number of numbers in the lottery.

Algorithm to select random pairs, schedule matchups

I'm working in Ruby, but I think this question is best asked agnostic of language. It may be assumed that we have access to basic list/array functions, as well as a "random" number generator. Here's what I'd like to be able to do:
Given a collection of n teams, with n even,
Randomly pair each team with an opponent, such that every team is part of exactly one pair. Call this ROUND 1.
Randomly generate n-2 subsequent rounds (ROUND 2 through ROUND n-1) such that:
Each round has the same property as the first (every team is a
member of one pair), and
After all the rounds, every team has faced every other team exactly once.
I imagine that algorithms for doing exactly this must be well known, but as a self-taught coder I'm having trouble figuring out how to find them.
I belive You are describing a round robin tournament. The wikipedia page gives an algorithm.
If You need a way to randomize the schedule, randomize team order, round order, etc.
Well not sure if this is the most efficient algorithm but:
Randomly assign N teams into two lists of same length n/2 (List1, List2)
Starting with i = 0:
Create pairs: List1[i],List2[i] = a team pair
Repeat for i = 1-> (n/2-1)
For rounds 2-> n/2-1:
Rotate List2, so that the first team in List2 is now at the end.
Repeat steps 2 through 5, until List2 has been cycled once.
This link was very helpful to me the last time I wrote a round robin scheduling algorithm. It includes a C implementation of a first fit algorithm for round robin pairings.
http://www.devenezia.com/downloads/round-robin/
In addition to the algorithm, he has some helpful links to other aspects of tournament scheduling (balancing home and away games, as well as rotating teams across fields/courts).
Note that you don't necessarily want a "random" order to the pairings in all cases. If, for example, you were scheduling a round robin soccer league for 8 games that only had 6 teams, then each team is going to have to play two other teams twice. If you want to make a more enjoyable season for everyone, you have to start worrying about seeding so that you don't have your top 2 teams clobbering the two weakest teams in their last two games. You'd be better off arranging for the extra games to be paired against teams of similar strength/seeding.
Based on info I found through Maniek's link, I went with the following:
A simple round robin algorithm that
a. Starts with pairings achieved by zipping [0,...,(n-1)/2] and [(n-1)/2 + 1,..., n-1]. (So, if n==10, we have 0 paired with 5, 1 with 6, etc.)
b. Rotates all but one team n-2 times clockwise until all teams have played each other. (So in round 2 we pair 1 with 6, 5 with 7, etc.)
Randomly assigns one of [0,..., n-1] to each of the teams.

Probability computation and algorithm for subsequences

Here is a game where cards 1-50 are distributed to two players each having 10 cards which are in random order. Aim is to sort all the cards and whoever does it first is the winner. Every time a person can pick up the card from the deck and he has to replace an existing card. A player can't exchange his cards. i.e only he can replace his card with the card from the deck.A card discarded will go back to deck in random order. Now I need to write a program which does this efficiently.
I have thought of following solution
1) find all the subsequences which are in ascending order in a given set of cards
2) for each subsequence compute a weight based on the probability of the no of ways which can solve the problem.
for ex: If I have a subsequence 48,49,50 at index 2,3,4 probability of completing the problem with this subsequnce is 0. So weight is multiplied by 0 .
Similarly if I have a sequence 18,20,30 at index 3,4,5 then no of possible ways completing the game is 20 possible cards to chose for 6-10 and 17 possible cards to chose for first 2 position ,
3) for each card from the deck, I'll scan through the list and recalculate the weight of the subsequnces to find a better fit.
Well, this solution may have lot of flaws but I wanted to know
1) Given a subsequence , how to find the probability of possible ways to complete the game?
2) What are the best algorithm to find all the subsequences?
So if I understand correctly, the goal is to obtain an ordered hand by exchanging as few cards as possible, right? Have you tried the following approach? It is very simplistic, yet I would guess it has a pretty good performance.
N=50
I=10
while hand is not ordered:
get a card from the deck
v = value of the card
put card in position round(v/N*I)

Resources