Why is there two identical method in laravel message bag? - laravel

I was reading laravel documentation regarding messagebag. There I found any() and isNotEmpty() methods. Both of them does the exact same thing. They try to determine if there are any messages and return true if there are any. I went to see the source code and I found that isNotEmpty() is doing nothing but calling the any() method.
public function isNotEmpty()
{
return $this->any();
}
public function any()
{
return $this->count() > 0;
}
What I don't understand is why laravel does same things in two places? Shouldn't one method be sufficient for this job?

You are right that one of the two methods would be sufficient. There is also not a single reason both of these methods exist, but I guess the combination of the following (and possibly even more) is why we have them:
The any() method has been there long before isNotEmpty() and there has always been an isEmpty() method alongside any() (as inverse method).
Because isNotEmpty() is a more obvious method name than any(), it has been added some years ago.
For backwards compatibility and because the implementation of any() is really trivial, there has never been a good reason to remove any().
It is actually quite common for programming languages and libraries to have different methods for the same thing. Some languages are using it more often and more obvious than others, but I guess it has a lot to do with readability. Although isNotEmpty() as in if ($messages->isNotEmpty()) { ... } is a lot longer than if ($messages->any()) { ... }, it seems more readable and understandable to me. But not everyone sees it the same way and my best guess is that there is a fan of any() in the group of the framework maintainers who doesn't want to write more than necessary.

Related

Single responsibility principle - function

I'm reading some tuts about SOLID programming, and I'm trying to refactor my test project to implement some of those rules.
Often I have doubts with SingleResponsibilityPrinciple, so I hope someone could help me with that.
As I understood, SRP means that (in case of a function), function should be responsible for only one thing. And that's seems pretty easy and simple, but I do get in a trap of doing more than thing.
This is simplified example:
class TicketService {
private ticket;
getTicket() {
httpClient.get().then(function(response) {
ticket = response.ticket;
emit(ticket); <----------------------
});
}
}
The confusing part is emit(ticket). So, my function is named getTicket, that's exactly what I'm doing there (fetching it from server e.g.), but on the other hand, I need to emit that change to all other parts of my application, and let them know that ticket is changed.
I could create separate set() function, where I could do setting of private variable, and emit it there, but that seems like a same thing.
Is this wrong? Does it break the rule? How would you fix it?
You could also return the ticket from the getTicket() function, and then have a separate function called setUpdatedTicket() that takes a ticket and sets the private parameter, and at the end calls the emit function.
This can lead to unexpected behavior. If I want to re-use your class in the future and I see with auto-completion in my IDE the method getTicket() I expect to get a Ticket.
However renaming this method to mailChangedTicket, ideally you want this method to call the getTicket method (which actually returns the ticket) and this way you have re-usable code which will make more sense.
You can take SRP really far, for example your TicketService has a httpClient, but it probably doesn't matter where the ticket comes from. In order to 'fix' this, you will have to create a seperate interface and class for this.
A few advantages:
Code is becoming more re-usable
It is easier to test parts separately
I can recommend the book 'Clean Code' from Robert C. Martin which gives some good guidelines to achieve this.

Magento, magic getters v getData

I have been using magento for a while now and always cant decide between using the magic getter and getData()
Can someone explain the main difference, apart from the slight performance overhead (and it must be very slight).
I am thinking in terms:
Future code proof (i think magento 2 will not be using magic getter)
Stylistically
Performance
Stability
Any other reasons to use 1 over the other
There is no clear way to go based on the core code as it uses a mixture of both
There's no one answer to fit all situations and it's best to decide based on the model you are using and the particular use case.
Performance is quite poor for magic methods, as well as the extra overhead of converting from CamelCase to under_score on each accessor.
the magic methods are basically a wrapper for getData() anyway, with extra overhead.
There's is one advantage of using magic methods though, for example:
if you use getAttributeName() rather than getData('attribute_name')
at some point in the future, the model may be updated to include a real, concrete getAttributeName() method, in which case your code will still work fine. However if you have used getData(), you access the attribute directly, and bypass the new method, which could include some important calculations which you are bypassing.
In my opinion, the safest way is to always use getData($key). The magic getter uses the same method as you already pointed out.
The advantage is that you can find all references to getData in your code and change it appropriately in case the getData() method is refactored. Compare that with having to find out all magic method calls where they are always named differently.
The second thing is that the magic getter can screw you up easily when you have a method which is named the same way (I think getName() got me once and it took quite some time to debug).
So my vote is definitely for using getData().
As stated before, it's best to use getData over the magic methods. Just wanted to add 2 quick points:
1) The performance overhead is not that slight, especially because of the implementation of _underscore in Varien_Object (as mentioned by Andrew).
2) The implementation of getData has some logic that helps "pretify" code, and although it is a little slower than typical getData calls, is still much faster than magic methods.
If you have nested Varien_Object's so that you need to perform a call like:
$firstObject->getData('second_object')->getData('third_object')->getData('some_string');
you can also perform that call like this:
$firstObject->getData('second_object/third_object/some_string');

Can it be advantageous for a method to return IOrderedEnumerable<T> instead of IEnumerable<T>?

Can it be advantageous for a method to return IOrderedEnumerable instead of IEnumerable?
Only if you expect people to order that enumerable every time and would find it hard to figure out how to do this OR if you can provide a collection that implements that interface that can efficiently order its contents and is paired with an extension method that is aware of your collection.
Best option is to return a specific collection type (see Richter for details on that). 99 times out of 100 whoever gets even a simple enumerable can use the standard linq extension methods to order it if they want.
Specifically, it would be worth doing if it makes sense for further .ThenBy calls, and not otherwise.

Executing a certain action for all elements in an Enumerable<T>

I have an Enumerable<T> and am looking for a method that allows me to execute an action for each element, kind of like Select but then for side-effects. Something like:
string[] Names = ...;
Names.each(s => Console.Writeline(s));
or
Names.each(s => GenHTMLOutput(s));
// (where GenHTMLOutput cannot for some reason receive the enumerable itself as a parameter)
I did try Select(s=> { Console.WriteLine(s); return s; }), but it wasn't printing anything.
A quick-and-easy way to get this is:
Names.ToList().ForEach(e => ...);
You are looking for the ever-elusive ForEach that currently only exists on the List generic collection. There are many discussions online about whether Microsoft should or should not add this as a LINQ method. Currently, you have to roll your own:
public static void ForEach<T>(this IEnumerable<T> value, Action<T> action)
{
foreach (T item in value)
{
action(item);
}
}
While the All() method provides similar abilities, it's use-case is for performing a predicate test on every item rather than an action. Of course, it can be persuaded to perform other tasks but this somewhat changes the semantics and would make it harder for others to interpret your code (i.e. is this use of All() for a predicate test or an action?).
Disclaimer: This post no longer resembles my original answer, but rather incorporates the some seven years experience I've gained since. I made the edit because this is a highly-viewed question and none of the existing answers really covered all the angles. If you want to see my original answer, it's available in the revision history for this post.
The first thing to understand here is C# linq operations like Select(), All(), Where(), etc, have their roots in functional programming. The idea was to bring some of the more useful and approachable parts of functional programming to the .Net world. This is important, because a key tenet of functional programming is for operations to be free of side effects. It's hard to understate this. However, in the case of ForEach()/each(), side effects are the entire purpose of the operation. Adding each() or ForEach() is not just outside the functional programming scope of the other linq operators, but in direct opposition to them.
But I understand this feels unsatisfying. It may help explain why ForEach() was omitted from the framework, but fails to address the real issue at hand. You have a real problem you need to solve. Why should all this ivory tower philosophy get in the way of something that might be genuinely useful?
Eric Lippert, who was on the C# design team at the time, can help us out here. He recommends using a traditional foreach loop:
[ForEach()] adds zero new representational power to the language. Doing this lets you rewrite this perfectly clear code:
foreach(Foo foo in foos){ statement involving foo; }
into this code:
foos.ForEach(foo=>{ statement involving foo; });
His point is, when you look closely at your syntax options, you don't gain anything new from a ForEach() extension versus a traditional foreach loop. I partially disagree. Imagine you have this:
foreach(var item in Some.Long(and => possibly)
.Complicated(set => ofLINQ)
.Expression(to => evaluate))
{
// now do something
}
This code obfuscates meaning, because it separates the foreach keyword from the operations in the loop. It also lists the loop command prior to the operations that define the sequence on which the loop operates. It feels much more natural to want to have those operations come first, and then have the the loop command at the end of the query definition. Also, the code is just ugly. It seems like it would be much nicer to be able to write this:
Some.Long(and => possibly)
.Complicated(set => ofLINQ)
.Expression(to => evaluate)
.ForEach(item =>
{
// now do something
});
However, even here, I eventually came around to Eric's point of view. I realized code like you see above is calling out for an additional variable. If you have a complicated set of LINQ expressions like that, you can add valuable information to your code by first assigning the result of the LINQ expression to a new variable:
var queryForSomeThing = Some.Long(and => possibly)
.Complicated(set => ofLINQ)
.Expressions(to => evaluate);
foreach(var item in queryForSomeThing)
{
// now do something
}
This code feels more natural. It puts the foreach keyword back next to the rest of the loop, and after the query definition. Most of all, the variable name can add new information that will be helpful to future programmers trying to understand the purpose of the LINQ query. Again, we see the desired ForEach() operator really added no new expressive power to the language.
However, we are still missing two features of a hypothetical ForEach() extension method:
It's not composable. I can't add a further .Where() or GroupBy() or OrderBy() after a foreach loop inline with the rest of the code, without creating a new statement.
It's not lazy. These operations happen immediately. It doesn't allow me to, say, have a form where a user chooses an operation as one field in a larger screen that is not acted on until the user presses a command button. This form might allow the user to change their mind before executing the command. This is perfectly normal (easy even) with a LINQ query, but not as simple with a foreach.
(FWIW, most naive .ForEach() implementations also have these issues. But it's possible to craft one without them.)
You could, of course, make your own ForEach() extension method. Several other answers have implementations of this method already; it's not all that complicated. However, I feel like it's unnecessary. There's already an existing method that fits what we want to do from both semantic and operational standpoints. Both of the missing features above can be addressed by use of the existing Select() operation.
Select() fits the kind of transformation or projection described by both of the examples above. Keep in mind, though, that I would still avoid creating side effects. The call to Select() should return either new objects or projections from the originals. This can sometimes be aided through the use of an anonymous type or dynamic object (if and only if necessary). If you need the results to persist in, say, an original list variable, you can always call .ToList() and assign it back to your original variable. I'll add here that I prefer working with IEnumerable<T> variables as much as possible over more concrete types.
myList = myList.Select(item => new SomeType(item.value1, item.value2 *4)).ToList();
In summary:
Just stick with foreach most of the time.
When foreach really won't do (which probably isn't as often as you think), use Select()
When you need to use Select(), you can still generally avoid (program-visible) side effects, possibly by projecting to an anonymous type.
Avoid the crutch of calling ToList(). You don't need it as much as you might think, and it can have significant negative consequence for performance and memory use.
Unfortunately there is no built-in way to do this in the current version of LINQ. The framework team neglected to add a .ForEach extension method. There's a good discussion about this going on right now on the following blog.
http://blogs.msdn.com/kirillosenkov/archive/2009/01/31/foreach.aspx
It's rather easy to add one though.
public static void ForEach<T>(this IEnumerable<T> enumerable, Action<T> action) {
foreach ( var cur in enumerable ) {
action(cur);
}
}
You cannot do this right away with LINQ and IEnumerable - you need to either implement your own extension method, or cast your enumeration to an array with LINQ and then call Array.ForEach():
Array.ForEach(MyCollection.ToArray(), x => x.YourMethod());
Please note that because of the way value types and structs work, if the collection is of a value type and you modify the elements of the collection this way, it will have no effect on the elements of the original collection.
Because LINQ is designed to be a query feature and not an update feature you will not find an extension which executes methods on IEnumerable<T> because that would allow you to execute a method (potentially with side effects). In this case you may as well just stick with
foreach(string name in Names)
Console.WriteLine(name);
Using Parallel Linq:
Names.AsParallel().ForAll(name => ...)
Well, you can also use the standard foreach keyword, just format it into a oneliner:
foreach(var n in Names.Where(blahblah)) DoStuff(n);
Sorry, thought this option deserves to be here :)
There is a ForEach method off of List. You could convert the Enumerable to List by calling the .ToList() method, and then call the ForEach method off of that.
Alternatively, I've heard of people defining their own ForEach method off of IEnumerable. This can be accomplished by essentially calling the ForEach method, but instead wrapping it in an extension method:
public static class IEnumerableExtensions
{
public static IEnumerable<T> ForEach<T>(this IEnumerable<T> _this, Action<T> del)
{
List<T> list = _this.ToList();
list.ForEach(del);
return list;
}
}
As mentioned before ForEach extension will do the fix.
My tip for the current question is how to execute the iterator
[I did try Select(s=> { Console.WriteLine(s); return s; }), but it wasn't printing anything.]
Check this
_= Names.Select(s=> { Console.WriteLine(s); return 0; }).Count();
Try it!

Using return statements to great effect!

When I am making methods with return values, I usually try and set things up so that there is never a case when the method is called in such a way that it would have to return some default value. When I started I would often write methods that did something, and would either return what they did or, if they failed to do anything, would return null. But I hate having ugly if(!null) statements all over my code,
I'm reading a re-guide to ruby that I read many moons ago, by the pragmatic programmers, and I notice that they often return self (ruby's this) when they wouldn't normally return anything. This is, they say, in order to be able to chain method calls, as in this example using setters that return the object whose attributes they set.
tree.setColor(green).setDecor(gaudy).setPractical(false)
Initially I find this sort of thing attractive. There have been a couple of times when I have rejoiced at being able to chain method calls, like Player.getHand().getSize() but this is somewhat different in that the object of the method call changes from step to step.
What does Stack Overflow think about return values? Are there any patterns or idioms that come to mind warmly when you think of return values? Any great ways to avoid frustration and increase beauty?
In my humble opinion, there are three kinds of return-cases that you should take into consideration:
Object property manipulation
The first is the manipulation of object properties. The pattern you describe here is very often used when manipulating objects. A very typical scenario is using it together with a factory. Consider this hypothetical creation call:
// When the object has manipulative methods:
Pizza p = PizzaFactory().create().addAnchovies().addTomatoes();
// When the factory has manipulative methods working on the
// object, IMHO more elegant from a semantic point of view:
Pizza p = PizzaFactory().create().addAnchovies().addTomatoes().getPizza();
It allows for a quick grasp at what exactly is being created or how an object is manipulated, because the methods form one human-readable expression. It's definitely nice, but don't overuse. A rule of thumb is that this might be used with methods whose return value you could also declare as void.
Evaluating object properties
The second might be when a method evaluates something on an object. Consider, for example, the method car.getCurrentSpeed(), that could be interpreted as a message to an object asking for the current speed and returning that. It would simply return the value, not too complicated. :)
Make object do this or that
The third might be when a method makes an perform an operation, returning some sort of value indicating how well the caller's intention was fulfilled - but laying out such a method could be difficult:
int new_gear = 20;
if (car.gears.changeGear(new_gear)) // does that mean success or fail?
This is where you can see a difficulty in designing the method. Should it return 0 upon success or failure? How about -1 if the gear could not be set, because the car only has 5 gears? Does that mean the current gear is at -1 now, too? The method could return the gear it changed to, meaning you would have to compare the argument supplied to the method to the return code. That would work. On the other hand, you could simply return either true or false for failure or false or true for failure. Which one to use could be decided by estimating if you'd expect those method calls to rather fail or succeed.
In my humble opinion, there is a way to better express the semantics of such return values, by giving them a semantic description. Future developers interacting with your objects will love you for not having to look up the comments or documentation for your methods:
class GearSystem {
// (...)
public:
enum GearChangeResult
{ GearChangeSuccess, NonExistingGear, MechanicalGearProblem };
GearChangeResult changeGear (int gear);
};
That way, it becomes perfectly obvious for any programmer looking at your code, what the return value means (consider: if (gears.changeGear(20) == GearSystem::GearChangeSuccess) - much clearer what that means than the example above)
Antipattern: Failures as return codes.
The fourth possibility for a return value I actually omitted, because in my opinion it isn't any: when there's an error in your program, like a logic error or a failure that needs to be dealt with - you could theoretically return a value indicating so. But today, that's not done so often anymore (or should not be), because for that, there are exceptions.
I don't agree that methods should never return null. The most obvious examples are from systems programming. For instance, if someone asks to open a file, you simply have to give them null if the open fails. There is no sane alternative. There are other cases where null is appropriate, such as a getNextNode(node) method, when called on the last node of a linked list. So I guess what these cases have in common is that null represents "no object" (either no file handle or no list node), which makes sense.
In other cases, the method should never fail, and there is an appropriate exception facility. Then, I think method chaining like your example can be used to great effect. I think it's a bit funny that you seem to believe this is an innovation of the "Pragmatic Programmers". In fact, it dates to Lisp if not before.
Returning this is also used in the "builder pattern", another case where method chaining can enhance readability as well as writing convenience.
A null is often returned as an out-of-band value to indicate that no result could be produced. I believe that this is perfectly reasonable when getting no result is a normal event; examples would include a null return from readLine() at end-of-file, or a null returned when providing a non-existent key to the get(...) method of a Map. Reading to the end of the file is normal behavior (as opposed to an IOException, which indicates that something went abnormally wrong while trying to read). Similarly, looking up a key and being told that it has no value is a normal case.
A good alternative to null for some cases is a "null object", which is a full-fledged instance of the result class, but which has appropriate state and behavior for a "nobody's home" case. For instance, the result of looking up a non-existent user ID might well be a NullUser object which has a zero-length name and no permissions to do anything in the system.
It's confusing to me. OO programming languages need Smalltalk's semicolon:
tree color: green;
decor: gaudy;
practical: false.
obj method1; method2. means "call method1 on obj then method2 on obj". This kind of object setup is very common.

Resources