C++11 std::chrono::duration_cast<> text of units being used - c++11

I am writing a templated timer class where one of the template typenames is the resolution being used, for example std::chrono::milliseconds.
I would like to be able to output the result of the measurement with the proper units based on the resolution that was selected:
std::cout << std::chrono::duration_cast<Resolution>(Clock::now() - mStart).count();
I would like to complete this statement with the units; is there a C++11 function that can give me the text of the "Resolution" being used, i.e. the string "milliseconds".

http://eel.is/c++draft/time.duration.io says that std::cout << std::chrono::milliseconds(23) should output "23ms"
#Acorn pointed out in a comment that this call was added for C++20.
You can roll it yourself:
std::chrono::milliseconds dur(23);
string s = tostring(dur.count()) + " milliseconds";

You can use something like:
template <class Duration>
struct DurationSuffix;
template <class Rep>
struct DurationSuffix<std::chrono::duration<Rep, std::ratio<1>>>
{
static const char suffix[];
};
template <class Rep>
struct DurationSuffix<std::chrono::duration<Rep, std::milli>>
{
static const char suffix[];
};
template <class Rep>
const char DurationSuffix<std::chrono::duration<Rep, std::ratio<1>>>::suffix[] = "s";
template <class Rep>
const char DurationSuffix<std::chrono::duration<Rep, std::milli>>::suffix[] = "ms";
And then you use it in your class like:
template <class Duration>
struct C
{
static void f()
{
std::cout << DurationSuffix<Duration>::suffix << "\n";
}
};
int main()
{
C<std::chrono::seconds>::f();
C<std::chrono::milliseconds>::f();
return 0;
}
This will print:
s
ms

Related

Using boost::program_options with std::optional

Boost's program_options library now supports boost::optional, can the same be done with std::optional?
I attempted to modify both the documentation example and the code in the PR, but neither seems to work.
For example, the very simple case for integers (before trying template specializations):
void validate(boost::any& v, const std::vector<std::string>& values, std::optional<int>* target_type,
int) {
using namespace boost::program_options;
validators::check_first_occurrence(v);
const string& s = validators::get_single_string(values);
int n = lexical_cast<int>(s);
v = any(std::make_optional<int>(n));
}
fails with the error that the target type is not istreamable:
external/boost/boost/lexical_cast/detail/converter_lexical.hpp:243:13:
error: static_assert failed due to requirement
'has_right_shift<std::__1::basic_istream<char>, std::__1::optional<int>, boost::binary_op_detail::dont_care>::value || boost::has_right_shift<std::__1::basic_istream<wchar_t>, std::__1::optional<int>, boost::binary_op_detail::dont_care>::value'
"Target type is neither std::istream`able nor std::wistream`able"
The problem with things like validate (and operator>> as well) is often ADL¹.
You need to declare the overload in one of the associated namespaces. In this case, because int is a primitive type, the only associated namespaces come from library code:
std for optional, vector, string, allocator, char_traits (yes these all count!)
boost for any
You'd prefer not to add your code in those namespaces, because you might interfere with library functions or invite future breakage when the library implementation details change.
If you had to choose, you'd prefer to choose boost here, because
that's the library providing the feature at hand
the validate free function is explicitly designed to be an customization point
Sidenote: Keep an eye out for tag_invoke - a better way to build customization points in libraries
The Fix
After all this verbiage, the solution is very simple:
namespace boost {
void validate(boost::any& v, const std::vector<std::string>& values,
std::optional<int>*, int) {
using namespace boost::program_options;
validators::check_first_occurrence(v);
const std::string& s = validators::get_single_string(values);
int n = boost::lexical_cast<int>(s);
v = boost::any(std::make_optional<int>(n));
}
} // namespace boost
Adding two lines made it work: Live On Wandbox.
Other Notes:
The "solution" injecting operator>> in general is less pure
because
it has a potential to "infect" all other code with ADL-visible overloads that might interfere. Way more code uses operator>> than
boost's validate function
it thereby invites UB due to
ODR violations,
when another translation unit, potentially legitimely, defines
another operator>> for the same arguments.
On recent compilers you can say vm.contains instead of the slightly abusive vm.count
There's another snag with non-streamable types, where, if you define a default value, you probably also need to specify the string representation with it.
Listing
Compiling on Compiler Explorer
#include <boost/program_options.hpp>
#include <optional>
#include <iostream>
namespace po = boost::program_options;
namespace boost {
void validate(boost::any& v, const std::vector<std::string>& values,
std::optional<int>*, int) {
using namespace boost::program_options;
validators::check_first_occurrence(v);
const std::string& s = validators::get_single_string(values);
int n = boost::lexical_cast<int>(s);
v = boost::any(std::make_optional<int>(n));
}
} // namespace boost
int main(int ac, char* av[]) {
try {
using Value = std::optional<int>;
po::options_description desc("Allowed options");
desc.add_options()
("help", "produce help message")
("value", po::value<Value>()->default_value(10, "10"),
"value")
;
po::variables_map vm;
po::store(po::parse_command_line(ac, av, desc), vm);
po::notify(vm);
if (vm.contains("value")) {
std::cout << "value is " << vm["value"].as<Value>().value() << "\n";
}
} catch (std::exception& e) {
std::cout << e.what() << "\n";
return 1;
}
}
BONUS
As an added exercise, let's demonstrate that if your optional value_type is not a primitive, but rather your library type, declared in a namespace MyLib, then we don't have most of the trade-offs above:
namespace MyLib {
template <typename T> struct MyValue {
MyValue(T v = {}) : value(std::move(v)) {}
private:
T value;
friend std::istream& operator>>(std::istream& is, MyValue& mv) {
return is >> mv.value;
}
friend std::ostream& operator<<(std::ostream& os, MyValue const& mv) {
return os << mv.value;
}
};
Now you could provide generic validators for any types in your MyLib namespace, be it optional or not, and have ADL find them through your MyLib namespace:
template <typename T, typename Values>
void validate(boost::any& v, Values const& values, T*, int) {
po::validators::check_first_occurrence(v);
v = boost::lexical_cast<T>(
po::validators::get_single_string(values));
}
template <typename T, typename Values>
void validate(boost::any& v, Values const& values, std::optional<T>*, int) {
po::validators::check_first_occurrence(v);
v = std::make_optional(
boost::lexical_cast<T>(
po::validators::get_single_string(values)));
}
} // namespace MyLib
See Live Demo
#include <boost/program_options.hpp>
#include <iostream>
#include <iomanip>
namespace po = boost::program_options;
namespace MyLib {
template <typename T> struct MyValue {
MyValue(T v = {}) : value(std::move(v)) {}
private:
T value;
friend std::istream& operator>>(std::istream& is, MyValue& mv) {
return is >> std::boolalpha >> mv.value;
}
friend std::ostream& operator<<(std::ostream& os, MyValue const& mv) {
return os << std::boolalpha << mv.value;
}
};
// Provide generic validators for any types in your MyLib namespace, be it
// optional or not
template <typename T, typename Values>
void validate(boost::any& v, Values const& values, T*, int) {
po::validators::check_first_occurrence(v);
v = boost::lexical_cast<T>(
po::validators::get_single_string(values));
}
template <typename T, typename Values>
void validate(boost::any& v, Values const& values, std::optional<T>*, int) {
po::validators::check_first_occurrence(v);
v = std::make_optional(
boost::lexical_cast<T>(
po::validators::get_single_string(values)));
}
} // namespace MyLib
int main(int ac, char* av[]) {
try {
using Int = MyLib::MyValue<int>;
using OptInt = std::optional<MyLib::MyValue<int>>;
using OptStr = std::optional<MyLib::MyValue<std::string> >;
po::options_description desc("Allowed options");
desc.add_options()
("ival", po::value<Int>()->default_value(Int{10}),
"integer value")
("opti", po::value<OptInt>()->default_value(OptInt{}, "(nullopt)"),
"optional integer value")
("sval", po::value<OptStr>()->default_value(OptStr{"secret"}, "'secret'"),
"optional string value")
;
po::variables_map vm;
po::store(po::parse_command_line(ac, av, desc), vm);
po::notify(vm);
std::cout << "Options: " << desc << "\n";
if (vm.contains("ival")) {
std::cout << "ival is " << vm["ival"].as<Int>() << "\n";
}
if (vm.contains("opti")) {
if (auto& v = vm["opti"].as<OptInt>())
std::cout << "opti is " << v.value() << "\n";
else
std::cout << "opti is nullopt\n";
}
if (vm.contains("sval")) {
if (auto& v = vm["sval"].as<OptStr>())
std::cout << "sval is " << v.value() << "\n";
else
std::cout << "sval is nullopt\n";
}
} catch (std::exception& e) {
std::cout << e.what() << "\n";
return 1;
}
}
For ./a.out --ival=42 --sval=LtUaE prints:
Options: Allowed options:
--ival arg (=10) integer value
--opti arg (=(nullopt)) optional integer value
--sval arg (='secret') optional string value
ival is 42
opti is nullopt
sval is LtUaE
¹ see also See also Why Does Boost Use a Global Function Override to Implement Custom Validators in "Program Options"

clang - how to declare a static const int in header file?

Given the following template in a header file, and a couple of specializations:
template<typename> class A {
static const int value;
};
template<> const int A<int>::value = 1;
template<> const int A<long>::value = 2;
and building with clang-5, it results in errors for each source unit that included the file, all complaining about multiple definitions for A<int>::value and A<long>::value.
At first, I thought that maybe the template specializations needed to be put in a specific translation unit, but on checking the spec, this apparently should be allowed, because the value is a constant integer.
Am I doing something else wrong?
EDIT: if I move the definition into a single translation unit, then I can no longer use the value of A<T>::value in the context of a const int (eg, where its value is being used to calculate the value of another const assignment) , so the value really needs to be in a header.
In c++11 you maybe can go that way:
template<typename> class B {
public:
static const int value = 1;
};
template<> class B<long> {
public:
static const int value = 2;
};
template<typename T> const int B<T>::value;
If you only want to specialize the value var, you can use CRTP for that.
From C++17 you can make your definition inline:
template<> inline const int A<int>::value = 1;
template<> inline const int A<long>::value = 2;
Also from c++17 you can remove the 'template const int B::value;' for constexpr:
template<typename> class C {
public:
static constexpr int value = 1;
};
template<> class C<long> {
public:
static constexpr int value = 2;
};
// no need anymore for: template<typename T> const int C<T>::value;
And another solution for c++11 can be to use a inline method instead of inline vars which are allowed from c++17:
template<typename T> class D {
public:
static constexpr int GetVal() { return 0; }
static const int value = GetVal();
};
template <> inline constexpr int D<int>::GetVal() { return 1; }
template <> inline constexpr int D<long>::GetVal() { return 2; }
template< typename T>
const int D<T>::value;
In addition to your last edit:
To use your values also in other dependent definitions it seems to be the most readable version if you use the inline constexpr methods.
Edit: "Special" version for clang, because as OP tells us, clang complains with "specialization happening after instantiation". I don't know if clang or gcc is wrong in that place...
template<typename T> class D {
public:
static constexpr int GetVal();
static const int value;
};
template <> inline constexpr int D<int>::GetVal() { return 1; }
template <> inline constexpr int D<long>::GetVal() { return 2; }
template <typename T> const int D<T>::value = D<T>::GetVal();
int main()
{
std::cout << D<int>::value << std::endl;
std::cout << D<long>::value << std::endl;
}
I told already that CRTP is possible if not the complete class should be redefined. I checked the code on clang and it compiles without any warning or error, because OP comments that he did not understand how to use it:
template<typename> class E_Impl {
public:
static const int value = 1;
};
template<> class E_Impl<long> {
public:
static const int value = 2;
};
template<typename T> const int E_Impl<T>::value;
template < typename T>
class E : public E_Impl<T>
{
// rest of class definition goes here and must not specialized
// and the values can be used here!
public:
void Check()
{
std::cout << this->value << std::endl;
}
};
int main()
{
E<long>().Check();
std::cout << E<long>::value << std::endl;
E<int>().Check();
std::cout << E<int>::value << std::endl;
}

Identify pointers in a tuple c++11

I need to convert a tuple to a byte array. This is the code I use to convert to byte array:
template< typename T > std::array< byte, sizeof(T) > get_bytes( const T& multiKeys )
{
std::array< byte, sizeof(T) > byteArr ;
const byte* start = reinterpret_cast< const byte* >(std::addressof(multiKeys) ) ;
const byte* end = start + sizeof(T);
std::copy(start, end, std::begin(byteArr));
return byteArr;
}
Here is how I call it:
void foo(T... keyTypes){
keys = std::tuple<T... >(keyTypes...);
const auto bytes = get_bytes(keys);
}
I need to augment this code such that when a pointer is a part of the tuple, I dereference it to it's value and then pass the new tuple, without any pointers, to the get_bytes() function. How do I detect the presence of a pointer in the tuple? I can then iterate through the tuple and dereference it with:
std::cout << *std::get<2>(keys) << std::endl;
Add a trivial overload: T get_bytes(T const* t) { return getBytes(*t); }.
That would be easy with C++14 :
#include <iostream>
#include <tuple>
#include <utility>
template <class T> decltype(auto) get_dereferenced_value(T &&value) {
return std::forward<T>(value);
}
template <class T> decltype(auto) get_dereferenced_value(T *value) {
return *value;
}
template <class Tuple, class Indexes> struct get_dereferenced_tuple_impl;
template <class... Args, size_t... Index>
struct get_dereferenced_tuple_impl<std::tuple<Args...>,
std::integer_sequence<size_t, Index...>> {
decltype(auto) operator()(std::tuple<Args...> const &originalTuple) {
return std::make_tuple(
get_dereferenced_value(std::get<Index>(originalTuple))...);
}
};
template <class Tuple>
decltype(auto) get_dereferenced_tuple(Tuple const &tupleValue) {
return get_dereferenced_tuple_impl<
Tuple,
std::make_integer_sequence<size_t, std::tuple_size<Tuple>::value>>{}(
tupleValue);
}
int main() {
char c = 'i';
std::tuple<char, char *> t{'h', &c};
auto t2 = get_dereferenced_tuple(t);
std::cout << std::get<0>(t2) << std::get<1>(t2) << "\n";
return 0;
}
If you cannot use C++14, then you would have to write more verbose decltype expressions, as well as include an implementation of std::(make_)integer_sequence.
This has a drawback though : copies will be made before copying the bytes. A tuple of references is not a good idea. The most performant version would be a get_bytes able to serialize the entire mixed tuple directly.

What is the return type of this auto?

With some code left out, elsewhere on SOF there is code that looks like this:
// CRTP Abstract Base class for implementing static subject.
// Example Subclass Usage -- Printing Observer:
class Printer : public Observer<Printer> {
public:
Printer() : timesTriggered_(0) {}
template <typename... Args>
void OnNotify(Pressure<Args...> &subject, EventType event) {
std::cout << "Observer ID: " << this->GetID() << std::endl;
switch (event) {
case EventType::UNKNOWN: {
std::cout << "Unknown Event -- Event #" << timesTriggered_++
<< std::endl;
std::cout << "Pressure: " << subject.GetPressure() << std::endl;
break;
}
default: { break; }
}
}
private:
int timesTriggered_;
};
// CRTP Abstract Base class for implementing static subject.
// Example Subclass Usage -- Pressure Sensor:
template <typename... Obs>
class Pressure : public Subject<Pressure<Obs...>, Obs...> {
public:
typedef Subject<Pressure<Obs...>, Obs...> BaseType;
Pressure(std::tuple<Obs &...> &&observers, int pressure)
: BaseType(std::move(observers)), pressure_(pressure) {}
void Change(int value) {
pressure_ = value;
this->NotifyAll(EventType::UNKNOWN);
}
int GetPressure() const { return pressure_; }
private:
int pressure_;
};
// Binding function for use with MakeSubject
// Arguments: observer objects to observe subject notifications
// Return: tuple of references to observers
template <typename... Obs> std::tuple<Obs &...> BindObservers(Obs &... obs) {
return std::tuple<Obs &...>(obs...);
}
// Creator to ease subject creation
// Template Arguments: Subject subclass type
// Arguments: Result from BindObservers
// Any constructor arguments for Subject subclass
// Return: Subject subclass
// Example Usage:
// auto pressure = MakeSubject<Pressure>(BindObservers(printerObs), initialPressure);
template <template <typename...> class T, typename... Args, typename... Obs>
T<Obs...> MakeSubject(std::tuple<Obs &...> &&obs, Args &&... args) {
return T<Obs...>(std::move(obs), args...);
}
In main.cpp
int main() {
Printer printerObs1;
Printer printerObs2;
const int initialPressure = 1;
auto pressure = MakeSubject<Pressure>(
BindObservers(printerObs1, printerObs2), initialPressure);
pressure.Change(12);
}
I need to break out the BindObservers and the return type of MakeSubject, but I can't correctly figure out what to replace both **auto in the pseudo-code below:**
auto obs = BindObservers(printerObs1, printerObs2);
auto pressure = MakeSubject<Pressure>(obs, initialPressure);
What is the exapanded version return types of both auto above? I need to store the return values in std::vector and AFAIK, I can't say
std::vector<auto> vec
[Although I don't see why not since the compiler can probably figure it out]
You can use std::vector<decltype(pressure)>.
But the type should be Pressure<Printer, Printer>.

Clang issue: Detecting constexpr function pointer with SFINAE

Based on the answer in Detecting constexpr with SFINAE I'm trying to use SFINAE to check if a 'constexpr' is present in my class.
The problem is that the constexpr is a function pointer:
#include <type_traits>
#include <iostream>
typedef int (*ptr_t)();
int bar() { return 9; }
struct Foo {
static constexpr ptr_t ptr = &bar;
};
namespace detail {
template <ptr_t>
struct sfinae_true : std::true_type {};
template <class T>
sfinae_true<T::ptr> check(int);
// Commented out to see why clang was not evaluating to true. This should only be
// a comment when debugging!
// template <class>
// std::false_type check(...);
} // detail::
template <class T>
struct has_constexpr_f : decltype(detail::check<T>(0)) {};
int main(int argc, char *argv[]) {
std::cout << has_constexpr_f<Foo>::value << std::endl;
return 0;
}
It seems to work fine using gcc, but clang complains:
test.cxx:23:39: error: no matching function for call to 'check'
struct has_constexpr_f : decltype(detail::check<T>(0)) {};
^~~~~~~~~~~~~~~~
test.cxx:26:22: note: in instantiation of template class 'has_constexpr_f<Foo>' requested here
std::cout << has_constexpr_f<Foo>::value << std::endl;
^
test.cxx:16:25: note: candidate template ignored: substitution failure [with T = Foo]: non-type template argument for template parameter of pointer type 'ptr_t' (aka 'int (*)()') must have its address taken
sfinae_true<T::ptr> check(int);
~ ^
1 error generated.
Q1: Can anyone suggest a way of doing this which works both for Clang and GCC?
Q2: Is this a bug in gcc, clang or is this left undefined in the c++ standard?
That's not a bug in clang, but an unfortunate restriction of arguments for non-type template parameters of pointer type (see pointer as non-type template argument). Essentially, you can only use arguments of the form &something: [temp.arg.nontype]/1 (from n3797)
[if the template-parameter is a pointer, its argument can be] a constant expression (5.19) that designates the address of a
complete object with static storage duration and external or
internal linkage or a function with external or internal linkage,
including function templates and function template-ids but excluding
non-static class members, expressed (ignoring parentheses) as &
id-expression, where the id-expression is the name of an object or
function, except that the & may be omitted if the name refers to a
function or array and shall be omitted if the corresponding
template-parameter is a reference; or [..]
[emphasis mine]
You can however, use a function pointer in a constant expression that has a non-pointer type, for example a boolean expression such as
T::ptr != nullptr
This works under clang++3.5 and g++4.8.2:
#include <type_traits>
#include <iostream>
typedef int (*ptr_t)();
int bar() { return 9; }
struct Foo0 {
static constexpr ptr_t ptr = &bar;
};
struct Foo1 {
static const ptr_t ptr;
};
ptr_t const Foo1::ptr = &bar;
struct Foo2 {
static const ptr_t ptr;
};
//ptr_t const Foo2::ptr = nullptr;
namespace detail
{
template <bool>
struct sfinae_true : std::true_type {};
template <class T>
sfinae_true<(T::ptr != nullptr)> check(int);
// the result of the comparison does not care
template <class>
std::false_type check(...);
} // detail::
template <class T>
struct has_constexpr_f : decltype(detail::check<T>(0)) {};
int main(int argc, char *argv[]) {
std::cout << std::boolalpha << has_constexpr_f<Foo0>::value << std::endl;
std::cout << std::boolalpha << has_constexpr_f<Foo1>::value << std::endl;
std::cout << std::boolalpha << has_constexpr_f<Foo2>::value << std::endl;
return 0;
}
Note there's a difference between clang++ and g++ for the second output (Foo1): g++ says true, clang++ says false.

Resources