what does 2n and m stands for? - algorithm

Suppose we need at most m guesses for an array of length n. Then, for an array of length 2n, the first guess cuts the reasonable portion of the array down to size n, and at most m guesses finish up, giving us a total of at most m+1, plus, 1 guesses.
What is the meaning of array of length 2n and m in this statement, what does it denote? i've also seen other symbols like o(n).
(Plus,does anyone know good reading materials to learn about these symbols)

The symbols m and n don't have general definitions; rather, they're available to be used in whatever way is needed when discussing a given problem, and their problem-specific definitions generally need to be given at that time.
In your quotation, the first sentence:
Suppose we need at most m guesses for an array of length n.
is actually the definition of m and n. If you prefer, you could read it like this:
For any given array, we need a certain number of guesses. Let n be a certain length, and let m be the greatest number of guesses we need for any array of length n.

They're not special symbols. Just generic letters... N (or X) are very common for denoting an unknown amount. M (or Y) usually refer to the next number in the problem.
M is the number of guesses, as the problem says
2N is 2 times N, or double the length of the array

Your question is quite broad. But using the context you are given, let me give you an example where this is used.
Suppose we are searching an array using Merge sort ( if you are new to merge sort read here https://www.geeksforgeeks.org/merge-sort/ ).
There will be m comparisons(m guesses) to find the specified element in the array.
When we double the number of elements in the array( in your case 2n) it will take m+1 comparisons (m+1 guesses) at most.

Related

Given O(n) sets, what is complexity of figuring out distinct ones amongst them?

I have an application where I have a list of O(n) sets.
Each set Set(i) is an n-vector. Suppose n=4, for instance,
Set(1) could be [0|1|1|0]
Set(2) could be [1|1|1|0]
Set(3) could be [1|1|0|0]
Set(4) could be [1|1|1|0]
I'd like to process these sets so that as output, I only get the unique ones amongst them. So, in the example above, I would get as output:
Set(1), Set(2), Set(3). Note that Set(4) is discarded since it is same as Set(2).
A rather brute force way of figuring this gives me a worst-case bound of O(n^3):
Given: Input List of size O(n)
Output List L = Set(1)
for(j = 2 to Length of Input List){ // Loop Outer, check if Set(j) should be added to L
for(i = 1 to Length of L currently){ // Loop Inner
check if Set(i) is same as Set(j) //This step is O(n) since Set() has O(n) elements
if(they are same) exit inner loop
else
if( i is length of L currently) //so, Set(j) is unique thus far
Append Set(j) to L
}
}
There is no a priori bound on n: it can be arbitrarily large. This seems to preclude use of simple hash function which maps the binary set into decimal. I could be wrong.
Is there any other way this can be done in better worst-case running time other than O(n^3)?
O(n) sequences of length n makes an input of size O(n^2). You won't get complexity better than that, since you may at least be required to read all the input. All sequences might be the same, for example, but you'd have to read them all to know that.
A binary sequence of length n can be inserted into a trie or radix tree, while checking whether or not it already exists, in O(n) time. That's O(n^2) for all the sequences together, so simply using a trie or radix tree to find duplicates is optimal.
See: https://en.wikipedia.org/wiki/Trie
and: https://en.wikipedia.org/wiki/Radix_tree
You may consider implementing your set using a balanced binary tree. The cost of inserting a new node into such a tree is O(lgm), where m is the number of elements in the tree. Duplicates would implicitly be weeded out because if we detect that such a node already exists, then it would just not be added.
In your example, the total number of lookup/insertion operations would be n*n, since there are n sets, and each set has n values. So, the overall time might scale as O(n^2*lg(n^2)). This outperforms O(n^3) by some amount.
First of all, these are not sets but bitstrings.
Next, for every bitstring you can convert it to a number and put that number in a hashset (or simply store the original bitstrings, most hashset implementations can do that). Afterwards, your hashset contains all the unique items. O(N) time, O(N) space. If you need to maintain the original order of strings, then in the first loop check for each string if it is in the hashset already, and if not, output it and insert in the hashset.
If you can use O(n) extra space, you can try this:
First of all, let's assume the vectors are binary numbers, so 0110 becomes 6.
This is in case numbers in vectors are [0,1], else you can multiply by 10 instead of 2.
Converting all vectors into decimals would take O(4n).
For each converted number we'll map the vector by the decimal number. To implement this, we'll be using an n-sized hash-map.
HM <- n-sized hash-map
for each vector v:
num <- decimal number converted of v
map v into HM by num
loop over HM and take only one for each index
runtime by steps:
O(n)
O(n*(4+1)) , when 1 is the time for mapping, 4 is the vector length
O(n)

Determine the value of M and does M depends on k?

Here is an exercise I'm struggling with:
One way to improve the performance of QuickSort is to switch to
InsertionSort when a subfile has <= M elements instead of recursively calling itself.
Implement a recursive QuickSort with a cutoff to InsertionSort for subfiles with M or less elements. Empirically determine the value of M for which it performs fewest key comparisons on inputs of 60000 random natural numbers less than K for K = 10,100,1000, 10000, 100000, 1000000. Does the optimal value M depend on K?
My issues:
I would like to know whether the value of M differs from statement 1 and statement 3. If so, what would be the array size, and how to vary the random numbers ? How to compare M and K? Do i have any mathematical equation or i should it just do it using my code ?
Implement the sort algoritm as requested.
Add support for recording the number of comparisons (e.g. increment a global)
Generate 5 sets of input data for each k. So 30 files with 1,800,000 lines in total.
Run the sort on every set for every K and guess M a couple of times. Start with the low-valued inputs and make the favorable M guide your guesses as you progress towards high-valued inputs.
Describe your observations about the influence of M over K.
Pass the exercise like a pro

Linear algorithm on binary strings

I'm going through some old midterms to study. (None of the solutions are given)
I've come across this problem which I'm stuck on
Let n = 2ℓ − 1 for some positive integer ℓ. Suppose someone claims to hold an array A[1.. n] of
distinct ℓ-bit strings; thus, exactly one ℓ-bit string does not appear in A. Suppose further that the
only way we can access A is by calling the function FetchBit(i, j), which returns the jth bit of the string A[i] in O(1) time.
Describe an algorithm to find the missing string in A using only O(n) calls to FetchBit.
The only thing I can think of is go through each string, convert it to base 10, sort them all and then see which value is missing. But that's certainly not O(n)
Proof it's not homework... http://web.engr.illinois.edu/~jeffe/teaching/algorithms/hwex/f12/midterm1.pdf
You can do it in 2n operations.
First, look at the first bit of every number. Obviously, you will get 2ℓ-1 zeros and 2ℓ-1-1 ones ore vice versa (because only one number is missing). If there is 2ℓ-1-1 ones then you know that the first bit of the missing number is one, otherwise it is zero.
Now you know the first bit of a missing number. Let's look at all numbers which have the same first bit (there are 2ℓ-1-1 of them) and repeat the same procedure with their second bit. This way you will determine the second bit of the missing number, and so on.
The total number of FetchBit calls will be 2ℓ-1 + 2ℓ-1-1 + ... + 21-1 <= 2ℓ+1 <= 2n+2 = O(n).

Does a combination of K integers exist, so that their sum is equal to a given number?

I've been breaking a sweat over this question I've been asked to answer (it's technically homework).
I've considered a hashtable but I'm kind of stuck on the exact specifics of how I'd make this work
Here's the question:
Given k sets of integers A1,A2,..,Ak of total size O(n), you should determine whether exist
a1 ϵ A1, a2 ϵ A2,..,ak ϵ Ak, such that a1+a2+..+ak−1 =ak. Your algorithm should run in Tk(n)
time, where Tk(n) = O(nk/2 × log n) for even k, and O(n(k+1)/2) for odd values of k.
Can anyone give me a general direction so that I can come closer to solving this?
Divide the k sets into two groups. For even k, both groups have k/2 sets each. For odd k, one group has (k+1)/2 and the other has (k-1)/2 sets. Compute all possible sums (taking one element from each set) within each group. For even k, you will get two arrays, each with nk/2 elements. For odd k, one array has n(k+1)/2 and the other array has n(k-1)/2 elements. The problem is reduced to the standard one "Given two arrays, check if a specified sum can be reached by taking one element from each array".

Generate all subset sums within a range faster than O((k+N) * 2^(N/2))?

Is there a way to generate all of the subset sums s1, s2, ..., sk that fall in a range [A,B] faster than O((k+N)*2N/2), where k is the number of sums there are in [A,B]? Note that k is only known after we have enumerated all subset sums within [A,B].
I'm currently using a modified Horowitz-Sahni algorithm. For example, I first call it to for the smallest sum greater than or equal to A, giving me s1. Then I call it again for the next smallest sum greater than s1, giving me s2. Repeat this until we find a sum sk+1 greater than B. There is a lot of computation repeated between each iteration, even without rebuilding the initial two 2N/2 lists, so is there a way to do better?
In my problem, N is about 15, and the magnitude of the numbers is on the order of millions, so I haven't considered the dynamic programming route.
Check the subset sum on Wikipedia. As far as I know, it's the fastest known algorithm, which operates in O(2^(N/2)) time.
Edit:
If you're looking for multiple possible sums, instead of just 0, you can save the end arrays and just iterate through them again (which is roughly an O(2^(n/2) operation) and save re-computing them. The value of all the possible subsets is doesn't change with the target.
Edit again:
I'm not wholly sure what you want. Are we running K searches for one independent value each, or looking for any subset that has a value in a specific range that is K wide? Or are you trying to approximate the second by using the first?
Edit in response:
Yes, you do get a lot of duplicate work even without rebuilding the list. But if you don't rebuild the list, that's not O(k * N * 2^(N/2)). Building the list is O(N * 2^(N/2)).
If you know A and B right now, you could begin iteration, and then simply not stop when you find the right answer (the bottom bound), but keep going until it goes out of range. That should be roughly the same as solving subset sum for just one solution, involving only +k more ops, and when you're done, you can ditch the list.
More edit:
You have a range of sums, from A to B. First, you solve subset sum problem for A. Then, you just keep iterating and storing the results, until you find the solution for B, at which point you stop. Now you have every sum between A and B in a single run, and it will only cost you one subset sum problem solve plus K operations for K values in the range A to B, which is linear and nice and fast.
s = *i + *j; if s > B then ++i; else if s < A then ++j; else { print s; ... what_goes_here? ... }
No, no, no. I get the source of your confusion now (I misread something), but it's still not as complex as what you had originally. If you want to find ALL combinations within the range, instead of one, you will just have to iterate over all combinations of both lists, which isn't too bad.
Excuse my use of auto. C++0x compiler.
std::vector<int> sums;
std::vector<int> firstlist;
std::vector<int> secondlist;
// Fill in first/secondlist.
std::sort(firstlist.begin(), firstlist.end());
std::sort(secondlist.begin(), secondlist.end());
auto firstit = firstlist.begin();
auto secondit = secondlist.begin();
// Since we want all in a range, rather than just the first, we need to check all combinations. Horowitz/Sahni is only designed to find one.
for(; firstit != firstlist.end(); firstit++) {
for(; secondit = secondlist.end(); secondit++) {
int sum = *firstit + *secondit;
if (sum > A && sum < B)
sums.push_back(sum);
}
}
It's still not great. But it could be optimized if you know in advance that N is very large, for example, mapping or hashmapping sums to iterators, so that any given firstit can find any suitable partners in secondit, reducing the running time.
It is possible to do this in O(N*2^(N/2)), using ideas similar to Horowitz Sahni, but we try and do some optimizations to reduce the constants in the BigOh.
We do the following
Step 1: Split into sets of N/2, and generate all possible 2^(N/2) sets for each split. Call them S1 and S2. This we can do in O(2^(N/2)) (note: the N factor is missing here, due to an optimization we can do).
Step 2: Next sort the larger of S1 and S2 (say S1) in O(N*2^(N/2)) time (we optimize here by not sorting both).
Step 3: Find Subset sums in range [A,B] in S1 using binary search (as it is sorted).
Step 4: Next, for each sum in S2, find using binary search the sets in S1 whose union with this gives sum in range [A,B]. This is O(N*2^(N/2)). At the same time, find if that corresponding set in S2 is in the range [A,B]. The optimization here is to combine loops. Note: This gives you a representation of the sets (in terms of two indexes in S2), not the sets themselves. If you want all the sets, this becomes O(K + N*2^(N/2)), where K is the number of sets.
Further optimizations might be possible, for instance when sum from S2, is negative, we don't consider sums < A etc.
Since Steps 2,3,4 should be pretty clear, I will elaborate further on how to get Step 1 done in O(2^(N/2)) time.
For this, we use the concept of Gray Codes. Gray codes are a sequence of binary bit patterns in which each pattern differs from the previous pattern in exactly one bit.
Example: 00 -> 01 -> 11 -> 10 is a gray code with 2 bits.
There are gray codes which go through all possible N/2 bit numbers and these can be generated iteratively (see the wiki page I linked to), in O(1) time for each step (total O(2^(N/2)) steps), given the previous bit pattern, i.e. given current bit pattern, we can generate the next bit pattern in O(1) time.
This enables us to form all the subset sums, by using the previous sum and changing that by just adding or subtracting one number (corresponding to the differing bit position) to get the next sum.
If you modify the Horowitz-Sahni algorithm in the right way, then it's hardly slower than original Horowitz-Sahni. Recall that Horowitz-Sahni works two lists of subset sums: Sums of subsets in the left half of the original list, and sums of subsets in the right half. Call these two lists of sums L and R. To obtain subsets that sum to some fixed value A, you can sort R, and then look up a number in R that matches each number in L using a binary search. However, the algorithm is asymmetric only to save a constant factor in space and time. It's a good idea for this problem to sort both L and R.
In my code below I also reverse L. Then you can keep two pointers into R, updated for each entry in L: A pointer to the last entry in R that's too low, and a pointer to the first entry in R that's too high. When you advance to the next entry in L, each pointer might either move forward or stay put, but they won't have to move backwards. Thus, the second stage of the Horowitz-Sahni algorithm only takes linear time in the data generated in the first stage, plus linear time in the length of the output. Up to a constant factor, you can't do better than that (once you have committed to this meet-in-the-middle algorithm).
Here is a Python code with example input:
# Input
terms = [29371, 108810, 124019, 267363, 298330, 368607,
438140, 453243, 515250, 575143, 695146, 840979, 868052, 999760]
(A,B) = (500000,600000)
# Subset iterator stolen from Sage
def subsets(X):
yield []; pairs = []
for x in X:
pairs.append((2**len(pairs),x))
for w in xrange(2**(len(pairs)-1), 2**(len(pairs))):
yield [x for m, x in pairs if m & w]
# Modified Horowitz-Sahni with toolow and toohigh indices
L = sorted([(sum(S),S) for S in subsets(terms[:len(terms)/2])])
R = sorted([(sum(S),S) for S in subsets(terms[len(terms)/2:])])
(toolow,toohigh) = (-1,0)
for (Lsum,S) in reversed(L):
while R[toolow+1][0] < A-Lsum and toolow < len(R)-1: toolow += 1
while R[toohigh][0] <= B-Lsum and toohigh < len(R): toohigh += 1
for n in xrange(toolow+1,toohigh):
print '+'.join(map(str,S+R[n][1])),'=',sum(S+R[n][1])
"Moron" (I think he should change his user name) raises the reasonable issue of optimizing the algorithm a little further by skipping one of the sorts. Actually, because each list L and R is a list of sizes of subsets, you can do a combined generate and sort of each one in linear time! (That is, linear in the lengths of the lists.) L is the union of two lists of sums, those that include the first term, term[0], and those that don't. So actually you should just make one of these halves in sorted form, add a constant, and then do a merge of the two sorted lists. If you apply this idea recursively, you save a logarithmic factor in the time to make a sorted L, i.e., a factor of N in the original variable of the problem. This gives a good reason to sort both lists as you generate them. If you only sort one list, you have some binary searches that could reintroduce that factor of N; at best you have to optimize them somehow.
At first glance, a factor of O(N) could still be there for a different reason: If you want not just the subset sum, but the subset that makes the sum, then it looks like O(N) time and space to store each subset in L and in R. However, there is a data-sharing trick that also gets rid of that factor of O(N). The first step of the trick is to store each subset of the left or right half as a linked list of bits (1 if a term is included, 0 if it is not included). Then, when the list L is doubled in size as in the previous paragraph, the two linked lists for a subset and its partner can be shared, except at the head:
0
|
v
1 -> 1 -> 0 -> ...
Actually, this linked list trick is an artifact of the cost model and never truly helpful. Because, in order to have pointers in a RAM architecture with O(1) cost, you have to define data words with O(log(memory)) bits. But if you have data words of this size, you might as well store each word as a single bit vector rather than with this pointer structure. I.e., if you need less than a gigaword of memory, then you can store each subset in a 32-bit word. If you need more than a gigaword, then you have a 64-bit architecture or an emulation of it (or maybe 48 bits), and you can still store each subset in one word. If you patch the RAM cost model to take account of word size, then this factor of N was never really there anyway.
So, interestingly, the time complexity for the original Horowitz-Sahni algorithm isn't O(N*2^(N/2)), it's O(2^(N/2)). Likewise the time complexity for this problem is O(K+2^(N/2)), where K is the length of the output.

Resources