I have several overloading functions like below:
template<typename T>
struct Point {
std::enable_if_t<std::is_arithmetic_v<T>, T>
x, y;
};
// These are two functions accepting only Point<> type.
template <typename T>
std::enable_if_t < std::is_class_v<T>
&& std::is_arithmetic_v<decltype(T::x)>
&& std::is_arithmetic_v<decltype(T::y)>
&& sizeof(T) == sizeof(decltype(T::x)) + sizeof(decltype(T::y)), T>
get(const char* key, T defaultValue)
{
// do something ..
return defaultValue;
}
template <typename T>
void set(const char* key, std::enable_if_t < std::is_class_v<T>
&& std::is_arithmetic_v<decltype(T::x)>
&& std::is_arithmetic_v<decltype(T::y)>
&& sizeof(T) == sizeof(decltype(T::x)) + sizeof(decltype(T::y)), T> value)
{
// do something ..
}
template <typename T>
std::enable_if_t <std::is_arithmetic_v<T>, T>
get(const char* key, T defaultValue)
{
return defaultValue;
}
template <typename T>
std::enable_if_t <std::is_enum_v<T>, T>
get(const char* key, T defaultValue)
{
return defaultValue;
}
// There are others overloading get<>(), set<>() for other types.
// Then call them
auto pod1 = get<int>(key, {});// OK
auto pod2 = get<float>(key, {});// OK
auto enm = get<SomeEnum>(key, {});// OK
auto pt1 = get<Point<int>>(key, {}); // OK
auto pt2 = get<Point<std::string>>(key, {}); // failed - correctly.
So far the code works well but they look quite verbose.
What I want here is what is the neatest way to avoid repetition of checking Point<> type in get/set functions?.
I have tried like these but they do not work:
template <typename T>
using is_point_t = std::enable_if_t <
std::is_class_v<T>
&& std::is_arithmetic_v<decltype(T::x)>
&& std::is_arithmetic_v<decltype(T::y)>
&& (sizeof(T) == sizeof(decltype(T::x)) + sizeof(decltype(T::y))), T>;
template <typename T>
is_point_t<T>
get(const char* key, T defaultValue)
{
// do something
return defaultValue;
}
template <typename T>
void set(const char* key, is_point_t<T> value)
{
// do something
}
// Or even like this, it also fails
template <typename T>
inline constexpr bool is_point_v = std::is_class_v<T>
&& std::is_arithmetic_v<decltype(T::x)>
&& std::is_arithmetic_v<decltype(T::y)>
&& (sizeof(T) == sizeof(decltype(T::x)) + sizeof(decltype(T::y)));
template <typename T>
std::enable_if_t <is_point_v<T>, T>
get(const char* key, T defaultValue)
{
// do something
return defaultValue;
}
template <typename T>
void set(const char* key,
std::enable_if_t <is_point_v<T>, T> value)
{
// do something
}
In MSVC 2019
error C1001: An internal error has occurred in the compiler.
error C1001: To work around this problem, try simplifying or changing the program near the locations listed above.
Related
I have a template class(CrMultiIndex) that receive as template parameter a definition of boost multi index(GlobalHash).
I need :
To add statistics to my template class according to Index used.
So i need a way to resize the vector(m_StatsByIndex) at init with the number of existing indices.
I still want the user to search according to tag and not index number.
So i need a way to convert from tag to index number so i can update statistics in vector according to index in vector.
I have template class
template <typename KeysType, typename MultiIndexType>
class CrMultiIndex
{
std::vector<SrStatisticsByIndex> m_StatsByIndex;
public:
MultiIndexType *m_pMultiIndex=NULL;
CrMultiIndex()
{
m_pMultiIndex = new MultiIndexType(typename
MultiIndexType::ctor_args_list());
}
Here is the definition of boost multi index container:
typedef boost::multi_index::multi_index_container<
CrUsersKeys,
UsersKey_hash_indices/*,
bip::allocator<CrUsersKeys,bip::managed_shared_memory::segment_manager>*/
> GlobalHash;
with a search function according to Tag
template <typename TagType,typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey & key)
{
return m_pMultiIndex->template get<TagType>().find(key) ;
}
Code is at http://coliru.stacked-crooked.com/a/d97195a6e4bb7ad4
You'd need to query the embedded index type lists:
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
namespace mpl = boost::mpl;
using tl = typename MultiIndexType::index_type_list;
using B = typename mpl::begin<tl>::type;
using helper = typename MultiIndexType::template index<Tag>;
static_assert(helper::index_found, "index not found");
auto N = mpl::distance<B, typename helper::iter>::value;
return N;
}
Or, using Boost Mpl all the way:
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
namespace mpl = boost::mpl;
using tl = typename MultiIndexType::index_type_list;
using B = typename mpl::begin<tl>::type;
using E = typename mpl::end<tl>::type;
using It = typename mpl::find_if<tl, bmi::detail::has_tag<Tag> >::type;
static_assert(not std::is_same<E, It>(), "index not found");
auto N = mpl::distance<B, It>::value;
return N;
}
You can use it like so:
template <typename TagType, typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey &key) {
auto& idx = m_pMultiIndex.template get<TagType>();
auto& stats = GetStats<TagType>();
auto it = idx.find(key);
++(it == idx.end()? stats.searchedNotFound : stats.searchedSuccessfully);
return it;
}
DEMO
Note the code has been simplified:
Live On Coliru
#include <iostream>
#include <boost/multi_index/member.hpp> // for member
#include <boost/multi_index/hashed_index.hpp> // for hashed_unique
#include <boost/multi_index/ordered_index.hpp> // for ordered_non_unique
#include <boost/multi_index_container.hpp> // for multi_index_container
namespace bmi = boost::multi_index;
struct SrStatisticsByIndex {
int deleted;
int searchedSuccessfully;
int searchedNotFound;
};
template <typename MultiIndexType, typename ValueType = typename MultiIndexType::value_type>
class CrMultiIndex {
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
using tl = typename MultiIndexType::index_type_list;
using B = typename boost::mpl::begin<tl>::type;
using helper = typename MultiIndexType::template index<Tag>;
static_assert(helper::index_found, "index not found");
return boost::mpl::distance<B, typename helper::iter>::value;
}
public:
MultiIndexType m_pMultiIndex;
template <typename Tag> SrStatisticsByIndex& GetStats()
{ return m_StatsByIndex.at(IndexOfTag<Tag>()); }
template <typename Tag> SrStatisticsByIndex const& GetStats() const
{ return m_StatsByIndex.at(IndexOfTag<Tag>()); }
// All the protected function are non locking function
template <typename TagType, typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey &key) {
auto& idx = m_pMultiIndex.template get<TagType>();
auto& stats = GetStats<TagType>();
auto it = idx.find(key);
++(it == idx.end()? stats.searchedNotFound : stats.searchedSuccessfully);
return it;
}
void Insert(ValueType const &key) {
std::cout << (m_pMultiIndex.insert(key).second? "success":"failed") << std::endl;
}
private:
std::vector<SrStatisticsByIndex> m_StatsByIndex { NumberOfIndexes() };
};
class CrUsersValue {
int val1;
int val2;
};
class CrUsersKeys {
public:
int IMSI;
int TIMESTAMP;
CrUsersValue val;
};
typedef boost::multi_index::multi_index_container<
CrUsersKeys,
bmi::indexed_by<
bmi::ordered_non_unique<bmi::tag<struct TIMESTAMP_tag>,
bmi::member<CrUsersKeys, int, &CrUsersKeys::TIMESTAMP> >,
bmi::hashed_unique<bmi::tag<struct IMSI_tag>,
bmi::member<CrUsersKeys, int, &CrUsersKeys::IMSI> /*, boost::hash<int>, std::equal_to<int>*/>
>
/*, bip::allocator<CrUsersKeys,bip::managed_shared_memory::segment_manager>*/
>
GlobalHash;
int main() {
CrMultiIndex<GlobalHash> multi;
CrUsersKeys key;
key.IMSI = 2;
multi.Insert(key);
int searchKey = 2;
auto it = multi.GetIteratorBy<IMSI_tag>(searchKey);
if (it != multi.m_pMultiIndex.get<IMSI_tag>().end())
std::cout << "found " << std::endl;
}
Prints
success
found
As a supplement to sehe's answer, this a rewrite of IndexOfTag that does not depend on undocumented Boost.MultiIndex features:
Live On Coliru
template<typename MultiIndexContainer,std::size_t N=0>
struct index_position:index_position<MultiIndexContainer,N+1>
{
using index_type=typename boost::multi_index::nth_index<MultiIndexContainer,N>::type;
using index_position<MultiIndexContainer,N+1>::case_of;
static constexpr std::size_t case_of(std::in_place_type_t<index_type>){return N;}
};
template<typename MultiIndexContainer>
struct index_position<
MultiIndexContainer,
boost::mpl::size<typename MultiIndexContainer::index_type_list>::value
>
{
static constexpr void case_of(...){}
};
template <typename MultiIndexContainer,typename Tag>
constexpr std::size_t IndexOfTag()
{
using index_type=typename boost::multi_index::index<MultiIndexContainer,Tag>::type;
return index_position<MultiIndexContainer>::case_of(std::in_place_type<index_type>);
}
Edit: In C++14:
Live On Coliru
template<typename MultiIndexContainer,std::size_t N=0>
struct index_position:index_position<MultiIndexContainer,N+1>
{
using index_type=typename boost::multi_index::nth_index<MultiIndexContainer,N>::type;
using index_position<MultiIndexContainer,N+1>::case_of;
static constexpr std::size_t case_of(index_type*){return N;}
};
template<typename MultiIndexContainer>
struct index_position<
MultiIndexContainer,
boost::mpl::size<typename MultiIndexContainer::index_type_list>::value
>
{
static constexpr void case_of(...){}
};
template <typename MultiIndexContainer,typename Tag>
constexpr std::size_t IndexOfTag()
{
using index_type=typename boost::multi_index::index<MultiIndexContainer,Tag>::type;
return index_position<MultiIndexContainer>::case_of((index_type*)(nullptr));
}
I have a class with a variadic template member function (foo) like below. The idea is to skip all doubles in the parameter and allocate an object with user provided arguments.
template <class T>
class Var {
public:
template <typename U, typename ...Args>
int foo(int index, Args... args)
{
T* p = new U(args...);
// save in an array at index 'index'
}
template <typename U, typename ...Args>
int foo (double index, Args... args)
{
// do something with index and skip it
return foo<U>(args...);
}
};
class A {
public:
A (int i, const char *p)
{
}
};
int main ()
{
Var<A> var;
var.foo<A>(1.0, 2, 3, "Okay");
}
Now this works, there are 2 problem.
Enforce how many doubles to skip.Eg: skip 2 doubles and then the next argument should be an int. If it is not then throw error.
While at it, use 'int' in place of 'double'. So we will skip 2 ints. The next index will be a 'index' to an array.
Basically I want to pass the no. of ints to skip as class template parameter.
template <class T, int SKIP>
class Var {
And use SKIP to determine how many ints to skip.
Is it possible to do something like that?
For your SKIP goal, you could do something like this:
template <typename U, typename ...Args>
int foo(Args ...args) {
return foo_helper<U, 0>(std::forward(args));
}
template <typename U, int I, typename ...Args>
int foo_helper(int index, Args ...args) {
return foo_helper<U, I+1>(std::forward(args));
}
template <typename U, typename ...Args>
int foo_helper<U, SKIP, Args...>(int index, Args ...args) {
blah = new U(std::forward(args));
return foobar;
}
Basically, have methods that count up to the target and strip off arguments until it's reached. Make a specialization for the target value.
Also, not that you'll probably want to forward the arguments to preserve references, etc.
I believe C++14 might make some of this easier, but I'm not familiar enough with newer template metaprogramming techniques to address that.
So this is what I conjured up taking hint from Novelocrat. Just pasting it hear for the records.
template <class T, int SKIP>
class FooHelper {
public:
template <typename U, typename ...Args>
static int foo_helper(int index, Args... args)
{
FooHelper<T, SKIP-1>::foo_helper<U>(args...);
return 0;
}
};
template <class T>
class FooHelper<T, 0> {
public:
template <typename U, typename ...Args>
static int foo_helper (Args... args)
{
auto p = new U(args...);
return 0;
}
};
template <class T, int SKIP>
class Var {
public:
template <typename U, typename ...Args>
int foo(Args ...args)
{
FooHelper<T, SKIP>::foo_helper<U>(args...);
return 0;
}
};
So I was Playing around with c++11 Varidiacs, and I wanted to create a thing called CallClass, basically a class that warps a function, for later call,when all variables are set(truly I have No Idea If It can Be Useful):
#include <tuple>
template <typename OBJ,typename F,typename... VARGS>
class CallClass
{
public:
CallClass(OBJ& object,F callFunction)
:_object(&object),_func(callFunction)
{ }
CallClass(const CallClass& other)
:_func_args(other._func_args)
,_object(other._object)
,_func(other._func)
{ }
template <size_t INDEX>
auto get(){ return std::get<INDEX>(_func_args); }
template <size_t INDEX,typename T>
void set(const T& val){ std::get<INDEX>(_func_args) = val; }
template <size_t INDEX,typename T>
void set(T&& val){ std::get<INDEX>(_func_args) = val; }
auto Call()
{
//throws segmentation Fault Here
return InnerCall<0>(_func_args);
}
virtual ~CallClass() {}
protected:
private:
std::tuple<VARGS...> _func_args;
OBJ* _object;
F _func;
template <size_t INDEX,typename... ARGS>
auto InnerCall(std::tuple<VARGS...>& tup,ARGS... args)
{
auto arg = std::get<INDEX>(tup);
return InnerCall<INDEX + 1>(tup,args...,arg);
}
template <size_t INDEX,VARGS...>
auto InnerCall(std::tuple<VARGS...>& tup,VARGS... args)
{
return (_object->*_func)(args...);
}
};
Now when I try to compile(compiling using IDE:code::blocks, configured to use MINGW On windows ), it prints Compiler:Segmentation Fault, anybody any Ideas?
Usage:
class obj{
public:
obj(int a)
:_a(a)
{ }
virtual ~obj() {}
int add(int b,int c){
return _a + b + c;
}
private:
int _a;
};
int main(){
obj ob(6);
CallClass<obj,decltype(obj::add),int,int> callAdd(ob,obj::add);
callAdd.set<0,int>(5);
callAdd.set<1,int>(7);
cout << "result is " << callAdd.Call() << endl;
return 0;
}
After a Bit of a search i stumbled upon a similar issue, in a way.
apparently the way I'm unpacking the tuple is an issue, so i decided to use a different approach as shown in: enter link description here
had to add a few changes to suit my needs:
changes:
namespace detail
{
template <typename OBJ,typename F, typename Tuple, bool Done, int Total, int... N>
struct call_impl
{
static auto call(OBJ& obj,F f, Tuple && t)
{
return call_impl<OBJ,F, Tuple, Total == 1 + sizeof...(N), Total, N..., sizeof...(N)>::call(obj,f, std::forward<Tuple>(t));
}
};
template <typename OBJ,typename F, typename Tuple, int Total, int... N>
struct call_impl<OBJ,F, Tuple, true, Total, N...>
{
static auto call(OBJ& obj,F f, Tuple && t)
{
return (obj.*f)(std::get<N>(std::forward<Tuple>(t))...);
}
};
}
// user invokes this
template <typename OBJ,typename F, typename Tuple>
auto call(OBJ& obj,F f, Tuple && t)
{
typedef typename std::decay<Tuple>::type ttype;
return detail::call_impl<OBJ,F, Tuple, 0 == std::tuple_size<ttype>::value, std::tuple_size<ttype>::value>::call(obj,f, std::forward<Tuple>(t));
}
and changed Call():
auto Call()
{
std::tuple<VARGS...> func_args = _func_args;
return call(*_object,_func, std::move(func_args));
}
I will probably make a few more changes, like passing the tuple as a reference, and making the structs a part of my class.
I am trying to wrap my head around parameter packs and need a little help.
Looking at the contrived example below, Is there a way to compare Args to T and only allow bar() to compile if they match? For example if I create Task<void(int, char, float)> I want bar(float, char, float) not to compile but bar(int, char, float) to compile just fine. Is this even feasible?
template <typename... Types>
struct foo {};
template<typename T>
struct Task;
template<typename R, typename...Args>
struct Task<R(Args...)>
{
template<typename... T>
std::enable_if<is_same<T, Args>
void bar(T... args)
{
//do something here
}
};
int main()
{
Task<int(int)> task;
int a = 0;
float b = 1.0;
bool c = false;
//compiles
task.bar(a);
//none of these should compile
task.bar(b);
task.bar(c);
task.bar(a, b);
task.bar(a, b, c);
}
First, syntax should be:
template<typename R, typename...Args>
struct Task<R(Args...)>
{
template<typename... T>
std::enable_if<is_same<tuple<T...>, tuple<Args...> >::value > bar(T... args)
{
//do something here
}
};
Which compiles fine, because of SFINAE: while trying to instantiate bar(bool) for example, first instantiation fails with bool type, but an instantiation exists when performing conversion of parameter to int.
To get desired effect, you need the hard type check to happen after instantiating the template:
#include <type_traits>
#include <tuple>
template<typename T>
struct Task;
template<typename R, typename... Args>
struct Task<R(Args...)>
{
template<typename... OtherArgs>
void bar(OtherArgs... otherArgs)
{
static_assert(
std::is_same<std::tuple<Args...>, std::tuple<OtherArgs...> >::value,
"Use same args types !"
);
// Do something
}
};
int main()
{
Task<int(int)> task;
// Compiles fine
task.bar(1);
// Fails to compile
task.bar('u');
task.bar(0ul);
return 0;
}
I have the following code:
#include <iostream>
#include <functional>
class test
{
public:
typedef std::function<bool(int)> Handler;
void handler(Handler h){h(5);}
};
class test2
{
public:
template< typename Ret2, typename Ret, typename Class, typename Param>
inline Ret2 MemFn(Ret (Class::*f)(Param), int arg_num)
{
if (arg_num == 1)
return std::bind(f, this, std::placeholders::_1);
}
bool f(int x){ std::cout << x << std::endl; return true;}
};
int main()
{
test t;
test2 t2;
t.handler(t2.MemFn<test::Handler>(&test2::f, 1));
return 0;
}
It works as expected.
I would like to be able to call this:
t.handler(t2.MemFn<test::Handler>(&test2::f));
instead of
t.handler(t2.MemFn<test::Handler>(&test2::f, 1));
Basically I need MemFn to determine in runtime what Handler expects as the number of arguments.
Is that even possible?
You may create some type_traits to have your info, something like:
template <typename T> struct function_trait;
template <typename Ret, typename ... Args>
struct function_trait<std::function<Ret(Args...)>>
{
static constexpr std::size_t args_count = sizeof...(Args);
};
And so your method may look like:
template<typename Ret2, typename Ret, typename Class, typename Param>
inline Ret2 MemFn(Ret (Class::*f)(Param))
{
if (function_trait<Ret2>::args_count == 1)
return std::bind(f, this, std::placeholders::_1);
throw std::runtime_error("invalid number of arguments");
}