Spoj question ONP Transform the expression giving signal abort - algorithm

I am trying to solve ONP - Transform the Expression in spoj. The question is to transform infix expression into postfix expression. I have used std::stack as my data structure and shunting-yard algorithm for solving it. The code runs fine on my computer using g++. But on spoj, it gives SIGABRT error. Even on ideone, it gives run time error free() invalid pointer.
I have tried several test cases. At first, I thought that my program was taking too much memory, but upon testing with time -v (ubuntu), I found that the maximum space taken was in KB.
// ------------------- infix to postfix conversion ---------------
#include <iostream>
#include <string>
#include <stack>
#include <algorithm>
#include <utility>
using std::stack;
using std::pair;
using std::cout;
using std::cin;
using std::endl;
using std::string;
stack< pair<char, short> > op_st; // operator stack
short op_precedence(char op) {
// return operator precedence
// input: operator; output: its precedence value
switch (op) {
case '+': return 0;
case '-': return 1;
case '*': return 2;
case '/': return 3;
case '^': return 4;
case '(': return 6;
}
}
inline bool is_operator(char sym) {
// is sym an operator?
return (sym == '+' || sym == '-' || sym == '*' || sym == '/' || sym == '^' || sym == '(');
}
inline bool is_operand(char sym) {
// is sym an operand?
return (sym >= 'a' && sym <= 'z');
}
void in_to_post(string & expr) {
// infix to postfix converter
// input: infix expression
for (int i = 0; i < expr.length(); ++i) {
if (is_operator(expr[i])) { // operator
// pop op_stack until the
// top of the stack has less precedence
// than curr operator or stack is empty
while(1) {
if (op_st.empty()) { // stack is empty; straight away push
op_st.push(std::make_pair(expr[i], op_precedence(expr[i])));
break;
}
pair <char, short> & top_op = op_st.top();
if (op_precedence(top_op.second) >= op_precedence(expr[i])) {
cout << top_op.first;
op_st.pop();
}
else {
op_st.push(std::make_pair(expr[i], op_precedence(expr[i])));
break;
}
}
}
else if (is_operand(expr[i])) { // operand; push it to output queue immediately
cout << expr[i];
}
else if (expr[i] == ')') { // right paranthesis
while (1) {
if (op_st.empty()) { // invalid expression; ')' reached before matching '('
//cout << "No matching '(' found\n";
abort();
}
pair <char, short> & top_op = op_st.top();
if (top_op.first == '(') { // matching '(' found; stop
op_st.pop();
break;
}
else {
cout << top_op.first;
op_st.pop();
}
}
}
}
// pop out the whole op_st (if any)
while (!(op_st.empty())) {
pair <char, short> & top_op = op_st.top();
cout << top_op.first;
op_st.pop();
}
}
int main() {
int t;
cin >> t;
for (int i = 0; i < t; ++i) {
string expr;
cin >> expr;
//cout << expr.length() << endl;
in_to_post(expr);
cout << "\n";
}
return 0;
}
Input to program given on my system:
((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))+((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))-((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))*((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))^((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))+((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))^((a+b)-c*(d+e))^((a+b)-c*(d+e))+((a+b)-c*(d+e))-((a+b)-c*(d+e))
Successfully gives the output:
ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*-ab+cde+*--+^^-+^+-+^^-+^*-+^--+^+-+^.
But, the same code gives free() invalid pointer error in ideone. Why is that?

op_precedence(top_op.second) calls op_precedence with the number returned by earlier op_precedence call - not with the operator character.
When op_precedence is passed an argument that doesn't match one of the recognized operators, the program exhibits undefined behavior, by way of reaching the end of a non-void function without encountering a return statement.

So, after Igor Tandetnik kindly pointed the mistake to me, in line 58, I changed op_precedence(top_op.second) to top_op.second. I also added default case to op_precedence function to correct the warning. After compiling and running, this code did actually abort() on line 75 for simple input ((a+b)). It turns out, that my implementation of the algorithm was wrong. My code didn't take into consideration associativity of operator '('. According to the question, we don't need to take into consideration associativity for other operators but for '(' we need its precedence to be higher than all other operators when outside of the stack, and lower than all other operators when inside of the stack. This is to ensure that when any operator other than '(' is the input and the top of the stack is '(', we could push the input operator into the stack. The corrected code is below:
// ------------------- infix to postfix conversion ---------------
#include <iostream>
#include <string>
#include <stack>
#include <algorithm>
#include <utility>
using std::stack;
using std::pair;
using std::cout;
using std::cin;
using std::endl;
using std::string;
short op_out_precedence(char op) {
// return operator precedence (when outside of stack)
// in and out precedence is to take care of associativity
// Here we don't require the associativity of any other operator except '('
// input: operator; output: its precedence value
switch (op) {
case '+': return 1;
case '-': return 2;
case '*': return 3;
case '/': return 4;
case '^': return 5;
case '(': return 6;
default : abort(); // not supposed to happen
// operator can't be other than the mentioned cases
}
}
short op_in_precedence(char op) {
// return operator precedence (when inside of stack)
// in and out precedence is to take care of associativity
// Here we don't require the associativity of any other operator except '('
// input: operator; output: its precedence value
switch (op) {
case '+': return 1;
case '-': return 2;
case '*': return 3;
case '/': return 4;
case '^': return 5;
case '(': return 0;
default : abort(); // not supposed to happen
// operator can't be other than the mentioned cases
}
}
inline bool is_operator(char sym) {
// is sym an operator?
return (sym == '+' || sym == '-' || sym == '*' || sym == '/' || sym == '^' || sym == '(');
}
inline bool is_operand(char sym) {
// is sym an operand?
return (sym >= 'a' && sym <= 'z');
}
void in_to_post(string & expr) {
// infix to postfix converter
// input: infix expression
stack< pair<char, short> > op_st; // operator stack
int len = expr.length();
for (int i = 0; i < len; ++i) {
if (is_operator(expr[i])) { // operator
// pop op_stack until the
// top of the stack has less or equal precedence
// than curr operator or stack is empty
while(1) {
if (op_st.empty()) { // stack is empty; straight away push
op_st.push(std::make_pair(expr[i], op_in_precedence(expr[i])));
break;
}
pair <char, short> & top_op = op_st.top();
if (top_op.second > op_out_precedence(expr[i])) {
cout << top_op.first;
op_st.pop();
}
else {
op_st.push(std::make_pair(expr[i], op_in_precedence(expr[i])));
break;
}
}
}
else if (is_operand(expr[i])) { // operand; push it to output queue immediately
cout << expr[i];
}
else if (expr[i] == ')') { // right paranthesis
while (1) {
if (op_st.empty()) { // invalid expression; ')' reached before matching '('
cout << "No matching '(' found\n";
abort();
}
pair <char, short> & top_op = op_st.top();
if (top_op.first == '(') { // matching '(' found; stop
op_st.pop();
break;
}
else {
cout << top_op.first;
op_st.pop();
}
}
}
}
// pop out the whole op_st (if any)
while (!(op_st.empty())) {
pair <char, short> & top_op = op_st.top();
cout << top_op.first;
op_st.pop();
}
}
int main() {
int t;
cin >> t;
for (int i = 0; i < t; ++i) {
string expr;
cin >> expr;
//cout << expr.length() << endl;
in_to_post(expr);
cout << "\n";
}
return 0;
}

Related

Stack Data structures (infix to postfix)

This is a program to convert infix to postfix in stack data structures.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int F(char symbol)
{
switch(symbol)
{
case '+':
case '-':return 2;
case '*':
case '/':return 4;
case '^':
case '$':return 5;
case '(':return 0;
case '#':return -1;
default:return 8;
}
}
int G(char symbol)
{
switch(symbol)
{
case '+':
case '-':return 1;
case '*':
case '/':return 3;
case '^':
case '$':return 6;
case '(':return 9;
case ')':return 0;
default:return 7;
}
}
void infixtopostfix(char infix[],char postfix[])
{
int top,i,j=0;
top = -1;
char s[30],symbol;
s[++top]= '#';
for(i=0;i<strlen(infix);i++)
{
symbol = infix[i];
while(F(s[top]) > G(symbol))
{
postfix[j]=s[top--];
j++;
}
if(F(s[top]) != G(symbol))
s[++top]=symbol;
else
top--;
}
while(s[top] != '#')
{
postfix[j++]=s[top--];
}
postfix[j] = '\0';
}
int main()
{
char infix[20],postfix[20];
printf("Enter the infix expression:\n");
scanf("%s",infix);
infixtopostfix(infix,postfix);
printf("Postfix Expression is %s",postfix);
return 0;
}
In this code, what is going on with the following lines?
if(F(s[top]) != G(symbol))
s[++top]=symbol;
else
top--;
}
while(s[top] != '#')
{
postfix[j++]=s[top--];
}
I don’t understand how f(s[top]) != g(symbol) is different than f(s[top]) > g(symbol), because if it is greater, it means automatically it is not equal. And what is f(s[top]) and g(symbol)?
The conditions
f(s[top]) != g(symbol)
and
f(s[top]) > g(symbol)
are both different.
The first one gives false if f(s[top]) and g(symbol) are equal. But in the second condition if f(s[top]) is less than g(symbol) then it generates false. But according to the first condition, true should be generated.

parentheses balanced in C language [closed]

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 6 years ago.
Improve this question
This is a parentheses balanced code. I submitted and got comment from my professor.
"Your stack is supposed to grow and shrink dynamically to accommodate any number of characters. DO NOT USE scanf for %s, this is risky behavior and Dr. Adams does not approve. Write a helper function to read in characters until newline."
Can you help me to fix this problem?
Your professor is correct and he gave you the solution: do not read a line into a buffer with scanf("%s",...): an arbitrary long line will cause a buffer overflow. You do not need to read a full line, just make check_balanced read one character at a time:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "stack.h"
#define TRUE 1
#define FALSE 0
int check_matching(void);
int main(int argc, char *argv[]) {
int n, i, c;
/* get the number of cases */
if (scanf("%d", &n) != 1) {
printf("invalid number\n");
exit(1);
}
/* consume the rest of the line */
while ((c = getchar()) != EOF && c != '\n')
continue;
for (i = 0; i < n; i++) {
if (check_matching()) {
printf("yes\n");
} else {
printf("no\n");
}
}
return 0;
}
int check_matching(void) {
int ret = TRUE, symbol, checkSymbol;
LinkedStack *pStack;
StackNode *pNode;
StackNode node;
pStack = createLinkedStack();
if (pStack == NULL) {
printf("createLinkedStack failed\n");
exit(1);
}
/* read a full line, one byte at a time */
while ((symbol = getchar()) != EOF && symbol != '\n') {
if (ret == FALSE)
continue;
switch (symbol) {
case '(':
case '[':
case '{':
node.data = symbol;
pushLS(pStack, node);
break;
case ')':
case ']':
case '}':
pNode = popLS(pStack);
if (pNode == NULL) {
ret = FALSE;
break;
} else {
checkSymbol = pNode->data;
if ((symbol == ')' && checkSymbol == '(')
|| (symbol == ']' && checkSymbol == '[')
|| (symbol == '}' && checkSymbol == '{')) {
// Right case. do nothing.
} else {
ret = FALSE;
}
free(pNode);
}
break;
}
}
if (isLinkedStackEmpty(pStack) == FALSE) {
ret = FALSE;
}
deleteLinkedStack(pStack);
return ret;
}

How to iterate over entire range /wo overflow of counter?

How to execute the body of the loop for every member of some type? I know I could repeat the body of the loop for the maxval after the loop, but it would be duplicating code which is bad. I also could make a function out of the body but it looks wrong to me too because functions should be small and simple and the body of the loop is huge.
const auto minval = std::numeric_limits<T>::min();
const auto maxval = std::numeric_limits<T>::max();
for (auto i = minval; i < maxval; ++i) {
// huge body of the loop
}
It is as simple as stopping after you process the last item:
auto i = minval;
while(1) {
// do all the work for `i`
if (i == maxval) break;
++i;
}
One can also move the increment to the top of the loop, provided it is skipped on the first pass:
i = minval;
switch (1) {
case 0:
do {
++i;
case 1:
// processing for `i`
} while (i != maxval);
}
The latter version translates to efficient machine code a little more directly, as each loop iteration has only a single conditional branch, and there is a single unconditional branch, while in the first there is a conditional branch plus an unconditional branch which both repeat every iteration.
Neither version increments the ultimate value, which might be undefined behavior.
You have to maintain a bit of additional state to indicate whether you've seen the last value or not. Here's a simple example that could be moved to a more idiomatic iterator style without too much work:
#include <iostream>
#include <limits>
using namespace std;
template <typename T>
class allvalues
{
public:
allvalues() = default;
T next()
{
if (done) throw std::runtime_error("Attempt to go beyond end of range");
T v = val;
done = v == std::numeric_limits<T>::max();
if (!done) ++val;
return v;
}
bool isDone() { return done; }
private:
T val = std::numeric_limits<T>::min();
bool done = false;
};
int main() {
allvalues<char> range;
while (!range.isDone())
{
std::cout << "Value = " << (int)range.next() << std::endl;
}
allvalues<unsigned char> urange;
while (!urange.isDone())
{
std::cout << "Value = " << (unsigned int)urange.next() << std::endl;
}
std::cout << "That's it!" << std::endl;
}

I want to use a random number to generate one of two cout's randomly

I am trying to use a number randomly selected between 1 and 2 and use that to display a random cout. I can't quite get this to work. Any suggestions? Thanks!
#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>
using namespace std;
int main()
{
srand(time(0));
for (int i = 1; i <= 1; i++)
{
int d1 = rand() % 2 + 1;
cout << d1 << endl;
cout << endl;
system("pause");
if (d1 == "1");
{
cout << "hello";
}
if (d1 == "2")
{
cout << "goodbye";
}
return 0;
}
First i recommend you make sure that you are not comparing an int to a string. Also remove the semicolon from after the first if statement.
if (d1 == 1)
{
cout << "hello";
}
Next make an else if statement instead of a new if statement.
else if (d1 == 2)
{
cout << "goodbye";
}
This should fix just about everything. Hope this helps. Goobyebye!
You're comparing an int to a string. change to, e.g. d1 == 1
That should get you going...
Compare the int to an int, then use the else clause.
Also, your if statement doesn't need a semicolon.
if (d1 == 1)
{
cout << "hello";
}
else
{
cout << "goodbye";
}
When you make a statement like:
if (d1 == "1")
You are comparing a string and an integer. Try:
if(d1 == 1)

How to find validity of a string of parentheses, curly brackets and square brackets?

I recently came in contact with this interesting problem. You are given a string containing just the characters '(', ')', '{', '}', '[' and ']', for example, "[{()}]", you need to write a function which will check validity of such an input string, function may be like this:
bool isValid(char* s);
these brackets have to close in the correct order, for example "()" and "()[]{}" are all valid but "(]", "([)]" and "{{{{" are not!
I came out with following O(n) time and O(n) space complexity solution, which works fine:
Maintain a stack of characters.
Whenever you find opening braces '(', '{' OR '[' push it on the stack.
Whenever you find closing braces ')', '}' OR ']' , check if top of stack is corresponding opening bracket, if yes, then pop the stack, else break the loop and return false.
Repeat steps 2 - 3 until end of the string.
This works, but can we optimize it for space, may be constant extra space, I understand that time complexity cannot be less than O(n) as we have to look at every character.
So my question is can we solve this problem in O(1) space?
With reference to the excellent answer from Matthieu M., here is an implementation in C# that seems to work beautifully.
/// <summary>
/// Checks to see if brackets are well formed.
/// Passes "Valid parentheses" challenge on www.codeeval.com,
/// which is a programming challenge site much like www.projecteuler.net.
/// </summary>
/// <param name="input">Input string, consisting of nothing but various types of brackets.</param>
/// <returns>True if brackets are well formed, false if not.</returns>
static bool IsWellFormedBrackets(string input)
{
string previous = "";
while (input.Length != previous.Length)
{
previous = input;
input = input
.Replace("()", String.Empty)
.Replace("[]", String.Empty)
.Replace("{}", String.Empty);
}
return (input.Length == 0);
}
Essentially, all it does is remove pairs of brackets until there are none left to remove; if there is anything left the brackets are not well formed.
Examples of well formed brackets:
()[]
{()[]}
Example of malformed brackets:
([)]
{()[}]
Actually, there's a deterministic log-space algorithm due to Ritchie and Springsteel: http://dx.doi.org/10.1016/S0019-9958(72)90205-7 (paywalled, sorry not online). Since we need log bits to index the string, this is space-optimal.
If you're willing to accept one-sided error, then there's an algorithm that uses n polylog(n) time and polylog(n) space: http://www.eccc.uni-trier.de/report/2009/119/
If the input is read-only, I don't think we can do O(1) space. It is a well known fact that any O(1) space decidable language is regular (i.e writeable as a regular expression). The set of strings you have is not a regular language.
Of course, this is about a Turing Machine. I would expect it to be true for fixed word RAM machines too.
Edit: Although simple, this algorithm is actually O(n^2) in terms of character comparisons. To demonstrate it, one can simply generate a string as '(' * n + ')' * n.
I have a simple, though perhaps erroneous idea, that I will submit to your criticisms.
It's a destructive algorithm, which means that if you ever need the string it would not help (since you would need to copy it down).
Otherwise, the algorithm work with a simple index within the current string.
The idea is to remove pairs one after the others:
([{}()])
([()])
([])
()
empty -> OK
It is based on the simple fact that if we have matching pairs, then at least one is of the form () without any pair character in between.
Algorithm:
i := 0
Find a matching pair from i. If none is found, then the string is not valid. If one is found, let i be the index of the first character.
Remove [i:i+1] from the string
If i is at the end of the string, and the string is not empty, it's a failure.
If [i-1:i] is a matching pair, i := i-1 and back to 3.
Else, back to 1.
The algorithm is O(n) in complexity because:
each iteration of the loop removes 2 characters from the string
the step 2., which is linear, is naturally bound (i cannot grow indefinitely)
And it's O(1) in space because only the index is required.
Of course, if you can't afford to destroy the string, then you'll have to copy it, and that's O(n) in space so no real benefit there!
Unless, of course, I am deeply mistaken somewhere... and perhaps someone could use the original idea (there is a pair somewhere) to better effect.
I doubt you'll find a better solution, since even if you use internal functions to regexp or count occurrences, they still have a O(...) cost. I'd say your solution is the best :)
To optimize for space you could do some run-length encoding on your stack, but I doubt it would gain you very much, except in cases like {{{{{{{{{{}}}}}}}}}}.
http://www.sureinterview.com/shwqst/112007
It is natural to solve this problem with a stack.
If only '(' and ')' are used, the stack is not necessary. We just need to maintain a counter for the unmatched left '('. The expression is valid if the counter is always non-negative during the match and is zero at the end.
In general case, although the stack is still necessary, the depth of the stack can be reduced by using a counter for unmatched braces.
This is an working java code where I filter out the brackets from the string expression and then check the well formedness by replacing wellformed braces by nulls
Sample input = (a+{b+c}-[d-e])+[f]-[g] FilterBrackets will output = ({}[])[][] Then I check for wellformedness.
Comments welcome.
public class ParanString {
public static void main(String[] args) {
String s = FilterBrackets("(a+{b+c}-[d-e])[][]");
while ((s.length()!=0) && (s.contains("[]")||s.contains("()")||s.contains("{}")))
{
//System.out.println(s.length());
//System.out.println(s);
s = s.replace("[]", "");
s = s.replace("()", "");
s = s.replace("{}", "");
}
if(s.length()==0)
{
System.out.println("Well Formed");
}
else
{
System.out.println("Not Well Formed");
}
}
public static String FilterBrackets(String str)
{
int len=str.length();
char arr[] = str.toCharArray();
String filter = "";
for (int i = 0; i < len; i++)
{
if ((arr[i]=='(') || (arr[i]==')') || (arr[i]=='[') || (arr[i]==']') || (arr[i]=='{') || (arr[i]=='}'))
{
filter=filter+arr[i];
}
}
return filter;
}
}
The following modification of Sbusidan's answer is O(n2) time complex but O(log n) space simple.
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
char opposite(char bracket) {
switch(bracket) {
case '[':
return ']';
case '(':
return ')';
}
}
bool is_balanced(int length, char *s) {
int depth, target_depth, index;
char target_bracket;
if(length % 2 != 0) {
return false;
}
for(target_depth = length/2; target_depth > 0; target_depth--) {
depth=0;
for(index = 0; index < length; index++) {
switch(s[index]) {
case '(':
case '[':
depth++;
if(depth == target_depth) target_bracket = opposite(s[index]);
break;
case ')':
case ']':
if(depth == 0) return false;
if(depth == target_depth && s[index] != target_bracket) return false;
depth--;
break;
}
}
}
}
void main(char* argv[]) {
char input[] = "([)[(])]";
char *balanced = is_balanced(strlen(input), input) ? "balanced" : "imbalanced";
printf("%s is %s.\n", input, balanced);
}
If you can overwrite the input string (not reasonable in the use cases I envision, but what the heck...) you can do it in constant space, though I believe the time requirement goes up to O(n2).
Like this:
string s = input
char c = null
int i=0
do
if s[i] isAOpenChar()
c = s[i]
else if
c = isACloseChar()
if closeMatchesOpen(s[i],c)
erase s[i]
while s[--i] != c ;
erase s[i]
c == null
i = 0; // Not optimal! It would be better to back up until you find an opening character
else
return fail
end if
while (s[++i] != EOS)
if c==null
return pass
else
return fail
The essence of this is to use the early part of the input as the stack.
I know I'm a little late to this party; it's also my very first post on StackOverflow.
But when I looked through the answers, I thought I might be able to come up with a better solution.
So my solution is to use a few pointers.
It doesn't even have to use any RAM storage, as registers can be used for this.
I have not tested the code; it's written it on the fly.
You'll need to fix my typos, and debug it, but I believe you'll get the idea.
Memory usage: Only the CPU registers in most cases.
CPU usage: It depends, but approximately twice the time it takes to read the string.
Modifies memory: No.
b: string beginning, e: string end.
l: left position, r: right position.
c: char, m: match char
if r reaches the end of the string, we have a success.
l goes backwards from r towards b.
Whenever r meets a new start kind, set l = r.
when l reaches b, we're done with the block; jump to beginning of next block.
const char *chk(const char *b, int len) /* option 2: remove int len */
{
char c, m;
const char *l, *r;
e = &b[len]; /* option 2: remove. */
l = b;
r = b;
while(r < e) /* option 2: change to while(1) */
{
c = *r++;
/* option 2: if(0 == c) break; */
if('(' == c || '{' == c || '[' == c)
{
l = r;
}
else if(')' == c || ']' == c || '}' == c)
{
/* find 'previous' starting brace */
m = 0;
while(l > b && '(' != m && '[' != m && '{' != m)
{
m = *--l;
}
/* now check if we have the correct one: */
if(((m & 1) + 1 + m) != c) /* cryptic: convert starting kind to ending kind and match with c */
{
return(r - 1); /* point to error */
}
if(l <= b) /* did we reach the beginning of this block ? */
{
b = r; /* set new beginning to 'head' */
l = b; /* obsolete: make left is in range. */
}
}
}
m = 0;
while(l > b && '(' != m && '[' != m && '{' != m)
{
m = *--l;
}
return(m ? l : NULL); /* NULL-pointer for OK */
}
After thinking about this approach for a while, I realized that it will not work as it is right now.
The problem will be that if you have "[()()]", it'll fail when reaching the ']'.
But instead of deleting the proposed solution, I'll leave it here, as it's actually not impossible to make it work, it does require some modification, though.
/**
*
* #author madhusudan
*/
public class Main {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
new Main().validateBraces("()()()()(((((())))))()()()()()()()()");
// TODO code application logic here
}
/**
* #Use this method to validate braces
*/
public void validateBraces(String teststr)
{
StringBuffer teststr1=new StringBuffer(teststr);
int ind=-1;
for(int i=0;i<teststr1.length();)
{
if(teststr1.length()<1)
break;
char ch=teststr1.charAt(0);
if(isClose(ch))
break;
else if(isOpen(ch))
{
ind=teststr1.indexOf(")", i);
if(ind==-1)
break;
teststr1=teststr1.deleteCharAt(ind).deleteCharAt(i);
}
else if(isClose(ch))
{
teststr1=deleteOpenBraces(teststr1,0,i);
}
}
if(teststr1.length()>0)
{
System.out.println("Invalid");
}else
{
System.out.println("Valid");
}
}
public boolean isOpen(char ch)
{
if("(".equals(Character.toString(ch)))
{
return true;
}else
return false;
}
public boolean isClose(char ch)
{
if(")".equals(Character.toString(ch)))
{
return true;
}else
return false;
}
public StringBuffer deleteOpenBraces(StringBuffer str,int start,int end)
{
char ar[]=str.toString().toCharArray();
for(int i=start;i<end;i++)
{
if("(".equals(ar[i]))
str=str.deleteCharAt(i).deleteCharAt(end);
break;
}
return str;
}
}
Instead of putting braces into the stack, you could use two pointers to check the characters of the string. one start from the beginning of the string and the other start from end of the string. something like
bool isValid(char* s) {
start = find_first_brace(s);
end = find_last_brace(s);
while (start <= end) {
if (!IsPair(start,end)) return false;
// move the pointer forward until reach a brace
start = find_next_brace(start);
// move the pointer backward until reach a brace
end = find_prev_brace(end);
}
return true;
}
Note that there are some corner case not handled.
I think that you can implement an O(n) algorithm. Simply you have to initialise an counter variable for each type: curly, square and normal brackets. After than you should iterate the string and should increase the coresponding counter if the bracket is opened, otherwise to decrease it. If the counter is negative return false. AfterI think that you can implement an O(n) algorithm. Simply you have to initialise an counter variable for each type: curly, square and normal brackets. After than you should iterate the string and should increase the coresponding counter if the bracket is opened, otherwise to decrease it. If the counter is negative return false. After you count all brackets, you should check if all counters are zero. In that case, the string is valid and you should return true.
You could provide the value and check if its a valid one, it would print YES otherwise it would print NO
static void Main(string[] args)
{
string value = "(((([{[(}]}]))))";
List<string> jj = new List<string>();
if (!(value.Length % 2 == 0))
{
Console.WriteLine("NO");
}
else
{
bool isValid = true;
List<string> items = new List<string>();
for (int i = 0; i < value.Length; i++)
{
string item = value.Substring(i, 1);
if (item == "(" || item == "{" || item == "[")
{
items.Add(item);
}
else
{
string openItem = items[items.Count - 1];
if (((item == ")" && openItem == "(")) || (item == "}" && openItem == "{") || (item == "]" && openItem == "["))
{
items.RemoveAt(items.Count - 1);
}
else
{
isValid = false;
break;
}
}
}
if (isValid)
{
Console.WriteLine("Yes");
}
else
{
Console.WriteLine("NO");
}
}
Console.ReadKey();
}
var verify = function(text)
{
var symbolsArray = ['[]', '()', '<>'];
var symbolReg = function(n)
{
var reg = [];
for (var i = 0; i < symbolsArray.length; i++) {
reg.push('\\' + symbolsArray[i][n]);
}
return new RegExp('(' + reg.join('|') + ')','g');
};
// openReg matches '(', '[' and '<' and return true or false
var openReg = symbolReg(0);
// closeReg matches ')', ']' and '>' and return true or false
var closeReg = symbolReg(1);
// nestTest matches openSymbol+anyChar+closeSymbol
// and returns an obj with the match str and it's start index
var nestTest = function(symbols, text)
{
var open = symbols[0]
, close = symbols[1]
, reg = new RegExp('(\\' + open + ')([\\s\\S])*(\\' + close + ')','g')
, test = reg.exec(text);
if (test) return {
start: test.index,
str: test[0]
};
else return false;
};
var recursiveCheck = function(text)
{
var i, nestTests = [], test, symbols;
// nestTest with each symbol
for (i = 0; i < symbolsArray.length; i++)
{
symbols = symbolsArray[i];
test = nestTest(symbols, text);
if (test) nestTests.push(test);
}
// sort tests by start index
nestTests.sort(function(a, b)
{
return a.start - b.start;
});
if (nestTests.length)
{
// build nest data: calculate match end index
for (i = 0; i < nestTests.length; i++)
{
test = nestTests[i];
var end = test.start + ( (test.str) ? test.str.length : 0 );
nestTests[i].end = end;
var last = (nestTests[i + 1]) ? nestTests[i + 1].index : text.length;
nestTests[i].pos = text.substring(end, last);
}
for (i = 0; i < nestTests.length; i++)
{
test = nestTests[i];
// recursive checks what's after the nest
if (test.pos.length && !recursiveCheck(test.pos)) return false;
// recursive checks what's in the nest
if (test.str.length) {
test.str = test.str.substring(1, test.str.length - 1);
return recursiveCheck(test.str);
} else return true;
}
} else {
// if no nests then check for orphan symbols
var closeTest = closeReg.test(text);
var openTest = openReg.test(text);
return !(closeTest || openTest);
}
};
return recursiveCheck(text);
};
Using c# OOPS programming... Small and simple solution
Console.WriteLine("Enter the string");
string str = Console.ReadLine();
int length = str.Length;
if (length % 2 == 0)
{
while (length > 0 && str.Length > 0)
{
for (int i = 0; i < str.Length; i++)
{
if (i + 1 < str.Length)
{
switch (str[i])
{
case '{':
if (str[i + 1] == '}')
str = str.Remove(i, 2);
break;
case '(':
if (str[i + 1] == ')')
str = str.Remove(i, 2);
break;
case '[':
if (str[i + 1] == ']')
str = str.Remove(i, 2);
break;
}
}
}
length--;
}
if(str.Length > 0)
Console.WriteLine("Invalid input");
else
Console.WriteLine("Valid input");
}
else
Console.WriteLine("Invalid input");
Console.ReadKey();
This is my solution to the problem.
O(n) is the complexity of time without complexity of space.
Code in C.
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
bool checkBraket(char *s)
{
int curly = 0, rounded = 0, squre = 0;
int i = 0;
char ch = s[0];
while (ch != '\0')
{
if (ch == '{') curly++;
if (ch == '}') {
if (curly == 0) {
return false;
} else {
curly--; }
}
if (ch == '[') squre++;
if (ch == ']') {
if (squre == 0) {
return false;
} else {
squre--;
}
}
if (ch == '(') rounded++;
if (ch == ')') {
if (rounded == 0) {
return false;
} else {
rounded--;
}
}
i++;
ch = s[i];
}
if (curly == 0 && rounded == 0 && squre == 0){
return true;
}
else {
return false;
}
}
void main()
{
char mystring[] = "{{{{{[(())}}]}}}";
int answer = checkBraket(mystring);
printf("my answer is %d\n", answer);
return;
}

Resources