Trigger AWS Lake Formation Workflow programmatically - aws-lake-formation

In the documentation I did not find a mention of programmatically triggering workflows (e.g. to load data from a RDBMS into S3). I also did not find anything in the API specification of AWS Lake Formation. We are using Airflow for scheduling our ETL pipeline and it would be nice if we could trigger the Workflow via an API call.

Lake Formation is used to specify permissions for tables and columns in the Glue Catalog. It does not manage ETL. You can use Glue to setup crawlers to download data from a RDBMS. A crawler can be part of a Glue Workflow.
Reference Links:
Documentation on adding a crawler for RDBMS
Glue API to start a crawler
Glue API to start a workflow

Related

How to save data from spark to Google cloud platform?

I will extract the data from oracle database through Spark, and then I want to store this data from spark to any storage in Google cloud platform. Is it possible? Data size is around 10TB.
You can run Spark in GCP using Qubole. There are also "Data Connectors" available which will allow you to integrate with Oracle and other RDBMS systems.
A general flow could look like:
- Run a spark job using JDBC to read from Oracle
- Perform any necessary processing
- Write the data back out to GCS or BigQuery
Ref: https://www.qubole.com/blog/technical-overview-of-qubole-on-gcp/
and https://docs-gcp.qubole.com/
You can use cloud storage connector with apache-spark, here is the link through it which might help you can refer to it.
Google cloud connector

Building Data Lake from scratch

I am trying to build a "Data Lake" from scratch. I understand how a data lake works and the purpose of it; it's all over the internet. But when the question arises how to build one from scratch there is no source. I want to understand if:
Data warehouse + Hadoop = Data Lake
I know how to run Hadoop and bring in data into Hadoop.
I want to build a sample on premise data lake to demo my manager. Any help is appreciated.
You'd have to have structured and unstructured data to make a Hadoop cluster into a data lake.
So, you'd have to have some ETL pipeline taking the unstructured data and converting it to structured data. Product reviews or something similar would provide your unstructured data. Converting this to something usable by Hive (as an example) would give you your structured data.
I would look at https://opendata.stackexchange.com/ for getting your data and google Hadoop ETL for ideas on how to cleanse the data. It's up to you how you want to write your pipeline (Spark or MapReduce).
You can build datalake using AWS services. A simple way to do so is to use an AWS CloudFormation template to configure the solution, including AWS services such as Amazon S3 for unlimited data storage, Amazon Cognito for authentication, Amazon Elasticsearch for strong searching capabilities, AWS Lambda for microservices, AWS Glue for data transmission, and Amazon Athena for data analytics. The following figure represents the complete architecture of building a data lake on AWS using AWS services.
Refer this article for reference: https://medium.com/#pmahmoudzadeh/building-a-data-lake-on-aws-3f02f66a079e

Loading data automatically from Oracle DB to Google BigQuery

Good day,
I have an Oracle DB and I need to load some tables so I can query them in BigQuery.
¿Is there a way of loading the data automatically, every 24 h, to Google BigQuery?
Any way would work. It could be loading into Data Storage and creating the tables from there, or loading into Google drive from the server.
I really need some ideas, I have read a lot of articles with no luck.
Check this tutorial by Progress:
https://www.progress.com/tutorials/cloud-and-hybrid/etl-on-premises-oracle-data-to-google-bigquery-using-google-cloud-dataflow
In this tutorial the main goal will be to connect to an On-Premises Oracle database, read the data, apply a simple transformation and write it to BigQuery. The code for this project has been uploaded to GitHub for your reference.
This solution uses Dataflow and Progress' Hybrid Data Pipeline tool:
Google Cloud Dataflow is a data processing service for both batch and real-time data streams. Dataflow allows you to build pipes to ingest data, then transform and process according to your needs before making that data available to analysis tools. DataDirect Hybrid Data Pipeline can be used to ingest both on-premises and cloud data with Google Cloud Dataflow.

Elastic search with Google Big Query

I have the event logs loaded in elasticsearch engine and I visualise it using Kibana. My event logs are actually stored in the Google Big Query table. Currently I am dumping the json files to a Google bucket and download it to a local drive. Then using logstash, I move the json files from the local drive to the elastic search engine.
Now, I am trying to automate the process by establishing the connection between google big query and elastic search. From what I have read, I understand that there is a output connector which sends the data from elastic search to Google big query but not vice versa. Just wondering whether I should upload the json file to a kubernete cluster and then establish the connection between the cluster and Elastic search engine.
Any help with this regard would be appreciated.
Although this solution may be a little complex, I suggest some solution that you use Google Storage Connector with ES-Hadoop. These two are very mature and used in production-grade by many great companies.
Logstash over a lot of pods on Kubernetes will be very expensive and - I think - not a very nice, resilient and scalable approach.
Apache Beam has connectors for BigQuery and Elastic Search, I would definitly perform this using DataFlow so you don´t need to implement a complex ETL and staging storage. You can read the data from BigQuery using BigQueryIO.Read.from (take a look to this if performance is important BigQueryIO Read vs fromQuery) and load it into ElasticSearch using ElasticsearchIO.write()
Refer this how read data from BigQuery Dataflow
https://github.com/GoogleCloudPlatform/professional-services/blob/master/examples/dataflow-bigquery-transpose/src/main/java/com/google/cloud/pso/pipeline/Pivot.java
Elastic Search indexing
https://github.com/GoogleCloudPlatform/professional-services/tree/master/examples/dataflow-elasticsearch-indexer
UPDATED 2019-06-24
Recently this year was release BigQuery Storage API which improve the parallelism to extract data from BigQuery and is natively supported by DataFlow. Refer to https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-api for more details.
From the documentation
The BigQuery Storage API allows you to directly access tables in BigQuery storage. As a result, your pipeline can read from BigQuery storage faster than previously possible.
I have recently worked on a similar pipeline. A workflow I would suggest would either use the mentioned Google storage connector, or other methods to read your json files into a spark job. You should be able to quickly and easily transform your data, and then use the elasticsearch-spark plugin to load that data into your Elasticsearch cluster.
You can use Google Cloud Dataproc or Cloud Dataflow to run and schedule your job.
As of 2021, there is a Dataflow template that allows a "GCP native" connection between BigQuery and ElasticSearch
More information here in a blog post by elastic.co
Further documentation and step by step process by google

Connect hadoop cluster to mutiple Google Cloud Storage backets in multiple Google Projects

It is possible, to connect my Hadoop cluster to multiple Google Cloud Projects at once ?
I can easly use any Google Storage bucket in single Google Project via Google Cloud Storage Connector as explained in this thread Migrating 50TB data from local Hadoop cluster to Google Cloud Storage. But i can't find any documentation or example how to connect to two or more Google Cloud Project from single map-reduce job. Do You have any suggestion/trick ?
Thanks a lot.
Indeed, it is possible to connect your cluster to buckets from multiple different projects at once. Ultimately, if you're using the instructions for using a service-account keyfile, the GCS requests are performed on behalf of that service-account, which can be treated more-or-less like any other user. You can either add the service account email your-service-account-email#developer.gserviceaccount.com to all the different cloud projects owning buckets you want to process, using the permissions section of cloud.google.com/console and simply adding that email address like any other member, or you can set GCS-level access to add that service-account like any other user.

Resources