Finding the values in Big Oh - algorithm

I am going through the Asymptotic notations from here. I am reading this f(n) ≤ c g(n)
For example, if f(n) = 2n + 2, We can satisfy it in any way as f(n) is O (c.g(n)) by adjusting the value of n and c. Or is there any specific rule or formula for selecting the value of c and n. Will no always be 1?

There is no formula per se. You can find the formal definition here:
f(n) = O(g(n)) means there are positive constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for the function f and must not depend on n. (big-O notation).
What I understood from your question is, you are not getting the essence of big-O notation. If your complexity is, for example, O(n^2), then you can guarantee that there is some value of n (greater than k) after which f(n) in no case will exceed c g(n).
Let's try to prove f(n) = 2n + 2 is O(n):
As it seems from the function itself, you cannot set the value of c equal to 2 as you want to find f(n) ≤ c g(n). If you plug in c = 2, you have to find k such that f(n) ≤ c g(n) for n ≥ k. Clearly, there is no n for which 2n ≥ 2n + 2. So, we move on to c = 3.
Now, let's find the value of k. So, we solve the equation 3n ≥ 2n + 2. Solving it:
3n ≥ 2n + 2
=> 3n - 2n ≥ 2
=> n ≥ 2
Therefore, for c = 3, we found value of k = 2 (n ≥ k).
You must also understand, your function isn't just O(n). It is also O(n^2), O(n^3), O(n^4) and so on. All because corresponding values of c and k exist for g(n) = n^2, g(n) = n^3 and g(n) = n^4.
Hope it helps.

Related

Big O Notation Example Show that N^2 is not O(n)

Show that n^2 is not O(n)
f(n)=n^2
g(n) = n
c = 1
n_0=2
n^2 <= 1*n for all n_0 >= 2
4 <= 2
4 is not less than or equal to 2. Therefore, n^2 is not O(n).
I need to show that NO c works with this, however, the c of 2, with n of 2 will work. How is n^2 not n?
Let's assume that n² is in O(n).
Then there must be a c and a n₀ such that for all n ≥ n₀, n² ≤ c*n (by the definition of O notation).
Let k = max(c, n₀) + 1. By the above property we have k² ≤ c*k (since k > n₀), from which it follows that k ≤ c.
However, k > c by construction. That's a contradiction.
Therefore our assumption is false and n² cannot be in O(n).

How to prove the complexity of a logarithmic function?

Let's say you were given two logarithmic functions like
and you were asked to find if f(n) is O(g(n)) Ω(g(n)) or Θ(g(n)), how would you go about it? I found questions like these easier when you were comparing two exponential equations, because for example with x(n) = n^2 and p(n) = n^2 you could find a c > 0 (ex 3) where x(n) <= cp(n) for all n greater than some n>0 and that would prove that x(n) = O(p(n)). However, comparing two logarithmic functions seems much more difficult for some reason. Any help is appreciated, thanks!
f(n) is O(g(n)) iff there is a constant c and n_0 such that f(n) <= c * g(n) for each n >= n_0.
f(n) is Ω(g(n)) iff there is a constant c and n_0 such that f(n) >= c * g(n) for each n >= n_0.
Now, f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n)).
So, in your cases, we have:
f(n) = log (n^2) = 2logn
which means, g(n) is logn and c = 2, which means f(n) <= 2 * logn and f(n) >= 2 * logn, which makes it Ω(logn).
Btw. its also f(n) <= n and f(n) >= 1, so f(n) can be O(n), but we don't use it, since we can find a better O(g(n)). In this case we don't have the same function in both notations, to for those values we don't have Ω. However, we just need one option for g(n) to declare Ω. In cases we can't find it, we say its not Ω. Note the word "we say".
In second case, we care only for "highest growing value", logn part. Now, c = 1, and g = log(n), so in this case, its also Ω(logn).

Proving if g(n) is o(f(n)), then f(n) + g(n) is Theta(f(n))

So I'm struggling with proving (or disproving) the above question. I feel like it is true, but I'm not sure how to show it.
Again, the question is if g(n) is o(f(n)), then f(n) + g(n) is Theta(f(n))
Note, that is a little-o, not a big-o!!!
So far, I've managed to (easily) show that:
g(n) = o(f(n)) -> g(n) < c*f(n)
Then g(n) + f(n) < (c+1)*f(n) -> (g(n) + f(n)) = O(f(n))
However, for showing Big Omega, I'm not sure what to do there.
Am I going about this right?
EDIT: Everyone provided great help, but I could only mark one. THANK YOU.
One option would be to take the limit of (f(n) + g(n)) / f(n) as n tends toward infinity. If this converges to a finite, nonzero value, then f(n) + g(n) = Θ(f(n)).
Assuming that f(n) is nonzero for sufficiently large n, the above ratio, in the limit, is
(f(n) + g(n)) / f(n)
= f(n) / f(n) + g(n) / f(n)
= 1 + g(n) / f(n).
Therefore, taking the limit as n goes to infinity, the above expression converges to 1 because the ratio goes to zero (this is what it means for g(n) to be o(f(n)).
So far so good.
For the next step, recall that in the best case, 0 <= g(n); this should get you a lower bound on g(n) + f(n).
Before we begin, lets first state what little-o and Big-Theta notations means:
Little-o notation
Formally, that g(n) = o(f(n)) (or g(n) ∈ o(f(n))) holds for
sufficiently large n means that for every positive constant ε
there exists a constant N such that
|g(n)| ≤ ε*|f(n)|, for all n > N (+)
From https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation.
Big-Θ notation
h(n) = Θ(f(n)) means there exists positive constants k_1, k_2
and N, such that k_1 · |f(n)| and k_2 · |f(n)| is an upper bound
and lower bound on on |h(n)|, respectively, for n > N, i.e.
k_1 · |f(n)| ≤ |h(n)| ≤ k_2 · |f(n)|, for all n > N (++)
From https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-big-theta-notation.
Given: g(n) ∈ o(f(n))
Hence, in our case, for every ε>0 we can find some constant N such that (+), for our functions g(n) and f(n). Hence, for n>N, we have
|g(n)| ≤ ε*|f(n)|, for some ε>0, for all n>N
Choose a constant ε < 1 (recall, the above holds for all ε > 0),
with accompanied constant N.
Then the following holds for all n>N
ε(|g(n)| + |f(n)|) ≤ 2|f(n)| ≤ 2(|g(n)| + |f(n)|) ≤ 4*|f(n)| (*)
Stripping away the left-most inequality in (*) and dividing by 2, we have:
|f(n)| ≤ |g(n)| + |f(n)| ≤ 2*|f(n)|, n>N (**)
We see that this is the very definition Big-Θ notation, as presented in (++), with constants k_1 = 1, k_2 = 2 and h(n) = g(n)+f(n). Hence
(**) => g(n) + f(n) is in Θ(f(n))
Ans we have shown that g(n) ∈ o(f(n)) implies (g(n) + f(n)) ∈ Θ(f(n)).

Confused on big O notation

According to this book, big O means:
f(n) = O(g(n)) means c · g(n) is an upper bound on f(n). Thus there exists some constant c such that f(n) is always ≤ c · g(n), for large enough n (i.e. , n ≥ n0 for some constant n0).
I have trubble understanding the following big O equation
3n2 − 100n + 6 = O(n2), because I choose c = 3 and 3n2 > 3n2 − 100n + 6;
How can 3 be a factor? In 3n2 − 100n + 6, if we drop the low order terms -100n and 6, aren't 3n2 and 3.n2 the same? How to solve this equation?
I'll take the liberty to slightly paraphrase the question to:
Why do and have the same asymptotic complexity.
For that to be true, the definition should be in effect both directions.
First:
let
Then for the inequality is always satisfied.
The other way around:
let
We have a parabola opened upwards, therefore there is again some after which the inequality is always satisfied.
Let's look at the definition you posted for f(n) in O(g(n)):
f(n) = O(g(n)) means c · g(n) is an upper bound on f(n). Thus there
exists some constant c such that f(n) is always ≤ c · g(n), for
large enough n (i.e. , n ≥ n0 for some constant n0).
So, we only need to find one set of constants (c, n0) that fulfils
f(n) < c · g(n), for all n > n0, (+)
but this set is not unique. I.e., the problem of finding the constants (c, n0) such that (+) holds is degenerate. In fact, if any such pair of constants exists, there will exist an infinite amount of different such pairs.
Note that here I've switched to strict inequalities, which is really only a matter of taste, but I prefer this latter convention. Now, we can re-state the Big-O definition in possibly more easy-to-understand terms:
... we can say that f(n) is O(g(n)) if we can find a constant c such
that f(n) is less than c·g(n) or all n larger than n0, i.e., for all
n>n0.
Now, let's look at your function f(n)
f(n) = 3n^2 - 100n + 6 (*)
Let's describe your functions as a sum of it's highest term and another functions
f(n) = 3n^2 + h(n) (**)
h(n) = 6 - 100n (***)
We now study the behaviour of h(n) and f(n), respectively:
h(n) = 6 - 100n
what can we say about this expression?
=> if n > 6/100, then h(n) < 0, since 6 - 100*(6/100) = 0
=> h(n) < 0, given n > 6/100 (i)
f(n) = 3n^2 + h(n)
what can we say about this expression, given (i)?
=> if n > 6/100, the f(n) = 3n^2 + h(n) < 3n^2
=> f(n) < c*n^2, with c=3, given n > 6/100 (ii)
Ok!
From (ii) we can choose constant c=3, given that we choose the other constant n0 as larger than 6/100. Lets choose the first integer that fulfils this: n0=1.
Hence, we've shown that (+) golds for constant set **(c,n0) = (3,1), and subsequently, f(n) is in O(n^2).
For a reference on asymptotic behaviour, see e.g.
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation
y=3n^2 (top graph) vs y=3n^2 - 100n + 6
Consider the sketch above. By your definition, 3n^2 only needs to be bigger than 3n^2 - 100n + 6 for large enough n (i.e. , n ≥ n0 for some constant n0). Let that n0 = 5 in this case (it could be something a little smaller, but it's clear which graph is bigger by n=5 so we'll just go with that).
Clearly from the graph, 3n^2 >= 3n^2 - 100n + 6 in the range we've plotted. The only way for 3n^2 - 100n + 6 to get bigger than 3n^2 then is for it to grow more steeply.
But the gradients of 3n^2 and 3n^2 - 100n + 6 are 6n and 6n - 100 respectively, so 3n^2 - 100n + 6 can't grow more steeply, therefore must always be underneath.
So your definition holds - 3n^2 - 100n + 6 <= 3n^2 for all n>=5
I am not an expert, but this looks a lot similar to what we just had in our real analysis course.
Basically if you have something like f(n) = 3n^2 − 100n + 6, the "fastest growing" term "wins" the other terms, when you have really really big n.
So in this case 3n^2 surpasses what ever 100n is, when the n is really big.
Another example would be something like f(n) = n/n^2 or f(n) = n! * n^2.
The first one gets smaller, as n simply cannot "keep up" with n^2. In the second example n! clearly grows faster than n^2, so I guess the answer for that should be f(n) = n! then, because the n^2 technically stops mattering with big n.
And terms like +6, which have no n affecting them are constants and matter even less as they cannot grow even if n grows.
It is all about what happends when n is really big. If your n is 34934854385754385463543856, then n^2 is hell of a bigger than 100n, because n^2 = n * n = 34934854385754385463543856 * 34934854385754385463543856.

Understanding Big(O) in loops

I am trying to get the correct Big-O of the following code snippet:
s = 0
for x in seq:
for y in seq:
s += x*y
for z in seq:
for w in seq:
s += x-w
According to the book I got this example from (Python Algorithms), they explain it like this:
The z-loop is run for a linear number of iterations, and
it contains a linear loop, so the total complexity there is quadratic, or Θ(n2). The y-loop is clearly Θ(n).
This means that the code block inside the x-loop is Θ(n + n2). This entire block is executed for each
round of the x-loop, which is run n times. We use our multiplication rule and get Θ(n(n + n2)) = Θ(n2 + n3)
= Θ(n3), that is, cubic.
What I don't understand is: how could O(n(n+n2)) become O(n3). Is the math correct?
The math being done here is as follows. When you say O(n(n + n2)), that's equivalent to saying O(n2 + n3) by simply distributing the n throughout the product.
The reason that O(n2 + n3) = O(n3) follows from the formal definition of big-O notation, which is as follows:
A function f(n) = O(g(n)) iff there exists constants n0 and c such that for any n ≥ n0, |f(n)| ≤ c|g(n)|.
Informally, this says that as n gets arbitrary large, f(n) is bounded from above by a constant multiple of g(n).
To formally prove that n2 + n3 is O(n3), consider any n ≥ 1. Then we have that
n2 + n3 ≤ n3 + n3 = 2n3
So we have that n2 + n3 = O(n3), with n0 = 1 and c = 2. Consequently, we have that
O(n(n + n2)) = O(n2 + n3) = O(n3).
To be truly formal about this, we would need to show that if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)). Let's walk through a proof of this. If f(n) = O(g(n)), there are constants n0 and c such that for n ≥ n0, |f(n)| ≤ c|g(n)|. Similarly, since g(n) = O(h(n)), there are constants n'0, c' such that for n ≥ n'0, g(n) ≤ c'|h(n)|. So this means that for any n ≥ max(c, c'), we have that
|f(n)| ≤ c|g(n)| ≤ c|c'h(n)| = c x c' |h(n)|
And so f(n) = O(h(n)).
To be a bit more precise - in the case of the algorithm described here, the authors are saying that the runtime is Θ(n3), which is a stronger result than saying that the runtime is O(n3). Θ notation indicates a tight asymptotic bound, meaning that the runtime grows at the same rate as n3, not just that it is bounded from above by some multiple of n3. To prove this, you would also need to show that n3 is O(n2 + n3). I'll leave this as an exercise to the reader. :-)
More generally, if you have any polynomial of order k, that polynomial is O(nk) using a similar argument. To see this, let P(n) = ∑i=0k(aini). Then, for any n ≥ 1, we have that
∑i=0k(aini) ≤ ∑i=0k(aink) = (∑i=0k(ai))nk
so P(n) = O(nk).
Hope this helps!
n(n+n2) == n2 + n3
Big-O notation only cares about the dominant term as n goes to infinity, so the whole algorithm is thought of as Θ(n3).
O(n(n+n^2)) = O(n^2 + n^3)
Since the n^3 term dominates the n^2 term, the n^2 term is negligible and thus it is O(n^3).
The y loop can be discounted because of the z loop (O(n) + O(n^2) -> O(n^2))
Forget the arithmetic.
Then you're left with three nested loops that all iterate over the full length of 'seq', so it's O(n^3)

Resources