How to interpolate values in panel data using a loop - for-loop

I have a panel dataset. My variable identifiers are cc for country codes and Year for years:
clear
input long cc float(sch Year)
2 0 1960
2 0 1961
2 0 1962
2 0 1963
2 0 1964
2 0 1965
2 0 1966
2 0 1967
2 0 1968
2 0 1969
2 0 1970
2 0 1971
2 0 1972
2 0 1973
2 0 1974
2 0 1975
2 0 1976
2 0 1977
2 .733902 1978
2 .7566 1979
2 .78 1980
2 .875 1981
2 .9225 1982
2 1.0174999 1983
2 1.0649999 1984
2 1.16 1985
2 1.2425 1986
2 1.28375 1987
2 1.36625 1988
2 1.4075 1989
2 1.49 1990
2 1.5825 1991
2 1.62875 1992
2 1.72125 1993
2 1.7675 1994
2 1.86 1995
2 1.935 1996
2 1.9725 1997
2 2.0475001 1998
2 2.085 1999
2 2.16 2000
2 2.27 2001
2 2.325 2002
2 2.435 2003
2 2.49 2004
2 2.6 2005
2 2.7575 2006
2 2.83625 2007
2 2.99375 2008
2 3.0725 2009
2 3.23 2010
2 3.15125 2011
2 3.190625 2012
2 3.1709375 2013
2 3.1807814 2014
2 3.1758595 2015
2 3.1783204 2016
2 3.17709 2017
2 3.177705 2018
4 0 1960
4 0 1961
4 0 1962
4 0 1963
4 0 1964
4 0 1965
4 0 1966
4 0 1967
4 0 1968
4 0 1969
4 0 1970
4 0 1971
4 0 1972
4 0 1973
4 0 1974
4 0 1975
4 0 1976
4 0 1977
4 4.657455 1978
4 4.8015 1979
4 4.95 1980
4 5.4 1981
4 5.625 1982
4 6.075 1983
4 6.3 1984
4 6.75 1985
4 7.02 1986
4 7.155 1987
4 7.425 1988
4 7.56 1989
4 7.83 1990
4 7.8275 1991
4 7.82625 1992
4 7.82375 1993
4 7.8225 1994
4 7.82 1995
4 8.195 1996
4 8.3825 1997
4 8.7575 1998
4 8.945 1999
4 9.32 2000
4 9.412499 2001
4 9.45875 2002
4 9.55125 2003
4 9.5975 2004
4 9.69 2005
4 9.73 2006
4 9.75 2007
4 9.79 2008
4 9.81 2009
4 9.85 2010
4 9.83 2011
4 9.84 2012
4 9.835 2013
4 9.8375 2014
4 9.83625 2015
4 9.836875 2016
4 9.836563 2017
4 9.83672 2018
end
I would like to interpolate the sch variable for decreasing years. Variable sch has observations over years 1979-2018. By using the observation for 1978 I would like to interpolate the value of 1977:
sch_1977 = 0.97 * sch_1978
The code I have tried is the following:
forvalues y = 1977 1976 1975{
local i = `y' - 1958
bysort cc (Year): generate sch`y' = 0.97*sch[`i']
replace sch`y' = 0 if Year != `y'
replace sch = sch + sch`y'
}
Here i corresponds to the row where the year of 1978 placed for variable cc. By using a forvalues loop, in every iteration I wanted to create a new variable (sch1977, sch1978, sch1979) with an interpolated observation in the corresponding year and zeros for all other observations. Next, I would like to sum up this new variable with sch. However, Stata complains that the code is invalid.

The following works for me:
foreach x in 1977 1976 1975 {
local i = (2018 - 1960) - (2018 - `x') + 2
bysort cc (Year): generate sch_`x' = 0.97 * sch[`i']
replace sch_`x' = 0 if Year != `x'
replace sch = sch + sch_`x'
}
Results:
bysort cc (Year): list if inrange(Year, 1970, 1980), sepby(cc)
-> cc = 2
+-------------------------------------------------------+
| cc sch Year sch_1977 sch_1976 sch_1975 |
|-------------------------------------------------------|
11. | 2 0 1970 0 0 0 |
12. | 2 0 1971 0 0 0 |
13. | 2 0 1972 0 0 0 |
14. | 2 0 1973 0 0 0 |
15. | 2 0 1974 0 0 0 |
16. | 2 .6698126 1975 0 0 .6698126 |
17. | 2 .6905284 1976 0 .6905284 0 |
18. | 2 .7118849 1977 .7118849 0 0 |
19. | 2 .733902 1978 0 0 0 |
20. | 2 .7566 1979 0 0 0 |
21. | 2 .78 1980 0 0 0 |
+-------------------------------------------------------+
-> cc = 4
+-------------------------------------------------------+
| cc sch Year sch_1977 sch_1976 sch_1975 |
|-------------------------------------------------------|
11. | 4 0 1970 0 0 0 |
12. | 4 0 1971 0 0 0 |
13. | 4 0 1972 0 0 0 |
14. | 4 0 1973 0 0 0 |
15. | 4 0 1974 0 0 0 |
16. | 4 4.250733 1975 0 0 4.250733 |
17. | 4 4.382199 1976 0 4.382199 0 |
18. | 4 4.517731 1977 4.517731 0 0 |
19. | 4 4.657455 1978 0 0 0 |
20. | 4 4.8015 1979 0 0 0 |
21. | 4 4.95 1980 0 0 0 |
+-------------------------------------------------------+

Related

Extract column from file with shell [duplicate]

This question already has answers here:
bash: shortest way to get n-th column of output
(8 answers)
Closed 4 years ago.
I would like to extract column number 8 from the following table using shell (ash):
0xd024 2 0 32 20 3 0 1 0 2 1384 1692 -61 27694088
0xd028 0 1 5 11 1 0 46 0 0 301 187 -74 27689154
0xd02c 0 0 35 14 1 0 21 0 0 257 250 -80 27689410
0xd030 1 1 15 13 1 0 38 0 0 176 106 -91 27689666
0xd034 1 1 50 20 1 0 8 0 0 790 283 -71 27689980
0xd038 0 0 0 3 4 0 89 0 0 1633 390 -90 27690291
0xd03c 0 0 8 3 3 0 82 0 0 1837 184 -95 27690603
0xd040 0 0 4 5 1 0 90 0 0 0 148 -97 27690915
0xd064 0 0 36 9 1 0 29 0 0 321 111 -74 27691227
0xd068 0 0 5 14 14 0 40 0 0 8066 2270 -85 27691539
0xd06c 1 1 39 19 1 0 15 0 0 1342 261 -74 27691850
0xd070 0 0 12 11 1 0 53 0 0 203 174 -73 27692162
0xd074 0 0 18 2 1 0 75 0 0 301 277 -94 27692474
How can I do that?
the following command "awk '{print $8}' file" works fine

swift2 How to parse variable spaced text

I have the following data (a portion shown below) and I'm trying to determine the best way to parse this into an array where each line would be parsed separately. The problem I'm running into is that each "column" is separated by a various number of spaces.
I have tried using .componentsSeparatedBySpaces(" ") but that doesn't give me a consistent number items in the array. I thought of using whiteSpace but some team names have 2 words in them and some have 3.
A sample of the text follows:
1 New England Patriots = 28.69 5 0 0 20.34( 13) 1 0 0 | 3 0 0 | 28.68 1 | 28.95 1 | 28.66 2
2 Green Bay Packers = 27.97 6 0 0 17.80( 28) 1 0 0 | 1 0 0 | 27.47 2 | 28.73 2 | 29.01 1
3 Denver Broncos = 26.02 6 0 0 19.02( 23) 0 0 0 | 2 0 0 | 25.21 5 | 27.25 3 | 27.98 3
4 Cincinnati Bengals = 25.96 6 0 0 19.91( 18) 1 0 0 | 3 0 0 | 25.71 4 | 26.38 4 | 26.36 4
5 Arizona Cardinals = 25.01 4 2 0 18.05( 27) 0 1 0 | 0 1 0 | 26.47 3 | 24.17 6 | 23.37 7
6 Pittsburgh Steelers = 24.87 4 2 0 21.17( 10) 1 1 0 | 1 2 0 | 25.17 6 | 24.53 5 | 24.39 5
7 Seattle Seahawks = 24.04 2 4 0 20.92( 12) 0 2 0 | 0 3 0 | 24.47 7 | 23.29 7 | 23.37 6
8 Philadelphia Eagles = 23.87 3 3 0 20.02( 17) 1 1 0 | 2 2 0 | 24.28 8 | 23.01 8 | 23.23 8
9 New York Jets = 22.95 4 1 0 18.41( 25) 0 1 0 | 0 1 0 | 23.83 9 | 22.77 10 | 21.69 11
10 Atlanta Falcons = 22.18 5 1 0 19.31( 21) 1 0 0 | 3 0 0 | 22.36 10 | 22.33 11 | 21.86 10

Image won't stop rotating in pygame

I have this section of code (similar to the previous piece of code). It's supposed to just sweep 50 degrees left, then stop and sweep 100 degrees right, then stop and sweep 100 degrees to the left, and so forth. Only problem is it stops at the left, goes right, then continues to go right, even though I have a stop there to prevent that from happening.
try:
screen.blit(Turrets[1], (TurretCoords[1]))
if Rotation == 1:
print(TurretRotation[1])
print(Rotation)
TurretRotation[1] = TurretRotation[1] - 1
Turrets[1] = pygame.transform.rotozoom(Turret, TurretRotation[1], 1)
if TurretRotation[1] == -50:
Rotation = -1
else:
print(TurretRotation[1])
print(Rotation)
TurretRotation[1] = TurretRotation[1] + 1
Turrets[1] = pygame.transform.rotozoom(Turret, TurretRotation[1], 1)
if TurretRotation[1] == 50:
Rotation = 1
Yes, I know, I was supposed to change the variables capital letters, and I haven't gotten around to it yet.
This is the output I get from the console.
-1 = Rotate
1 = TurretRotation[1]
-1
2
-1
3
-1
4
-1
5
-1
6
-1
7
-1
8
-1
9
-1
10
-1
11
-1
12
-1
13
-1
14
-1
15
-1
16
-1
17
-1
18
-1
19
-1
20
-1
21
-1
22
-1
23
-1
24
-1
25
-1
26
-1
27
-1
28
-1
29
-1
30
-1
31
-1
32
-1
33
-1
34
-1
35
-1
36
-1
37
-1
38
-1
39
-1
40
-1
41
1
40
1
39
1
38
1
37
1
36
1
35
1
34
1
33
1
32
1
31
1
30
1
29
1
28
1
27
1
26
1
25
1
24
1
23
1
22
1
21
1
20
1
19
1
18
1
17
1
16
1
15
1
14
1
13
1
12
1
11
1
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
-1
1
-2
1
-3
1
-4
1
-5
1
-6
1
-7
1
-8
1
-9
1
-10
1
-11
1
-12
1
-13
1
-14
1
-15
1
-16
1
-17
1
-18
1
-19
1
-20
1
-21
1
-22
1
-23
1
-24
1
-25
1
-26
1
-27
1
-28
1
-29
1
-30
1
-31
1
-32
1
-33
1
-34
1
-35
1
-36
1
-37
1
-38
1
-39
1
-40
1
-41
1
-42
1
-43
1
-44
1
-45
1
-46
1
-47
1
-48
1
-49
1
-50
1
-51
1
-52
1
-53
1
-54
1
-55
1
-56
1
-57
1
-58
1
-59
1
-60
1
-61
1
-62
1
-63
1
-64
1
-65
1
-66
1
-67
1
-68
1
-69
1
-70
1
-71
1
-72
1
-73
1
-74
1
-75
1
-76
1
-77
1
-78
1
-79
1
-80
1
-81
1
-82
1
-83
1
-84
1
I can't run it so I can only advice - I see you have print - so see what's going on with variables. Maybe one of them is changed in different place.
But you can do one this - use <= and >= - it should help.
if TurretRotation[1] >= 50:
if TurretRotation[1] <= -50:

Maths in a while loop causing random negative numbers

So I have done this in both python and bash, and the code I am about to post probably has a world of things wrong with it but it is generally very basic and I cannot see a reason that it would cause this 'bug' which I will explain soon.. I have done the same in Python, but much more professionally and cleanly and it also causes this error (at some point, the maths generates a negative number, which makes no sense.)
#!/bin/bash
while [ 1 ];
do
zero=0
ARRAY=()
ARRAY2=()
first=`command to generate a list of numbers`
sleep 1
second=`command to generate a list of numbers`
# so now we have two data sets, 1 second between the capture of each.
for i in $first;
do
ARRAY+=($i)
done
for i in $second;
do
ARRAY2+=($i)
done
for (( c=$zero; c<=${#ARRAY2[#]}; c++ ))
do
expr ${ARRAY2[$c]} - ${ARRAY[$c]}
done
ARRAY=()
ARRAY2=()
zero=0
c=0
first=``
second=``
math=''
done
So the script grabs a set of data, waits 1 second, grabs it again, does math on the two sets to get the difference, that difference is printed. It's very simple, and I have done it elegantly in Python too - no matter how I would do it every now and then, could be anywhere from 3 loops in to 30 loops in, we will get negative numbers.. like so:
START 0 0 0 0 0 19 10 563 0
-34 19 14 2 0
-1302 1198
-532 639
-1078 1119 1 0 0
-843 33 880 0 5
-8
-13508 8773 4541 988 181
-12
-205 217
-9 7 1
-360 303 60 1 0 0
-12
-96 98 3
-870 904
-130
-2105 2264 6
-3084 1576 1650
-939 971
-2249 1150 1281
-693 9 513 142 76 expr: syntax error
Please help, I simply can't find anything about this.
Sample OUTPUT as requested:
ARRAY1 OUTPUT
1 15 1 25 25 1 2 1 3541 853 94567 42 5 1 351 51 1 11 1 13 7 14 12 3999 983 5 1938 3 8287 40 1 1 1 5253 706 1 1 1 1 5717 3 50 1 85 100376 17334 4655 1 1345 2 1 16 1777 1 3 38 23 8 32 47 781 947 1 1 206 9 1 3 2 81 2602 7 158 1 1 43 91 1 120 6589 6 2534 1092 1 6014 7 2 2 37 1 1 1 80 2 1 1270 15448 66 1 10238 1 10794 16061 4 1 1 1 9754 5617 1123 926 3 24 10 16
ARRAY2 OUTPUT
1 15 1 25 25 1 2 1 3555 859 95043 42 5 1 355 55 1 11 1 13 7 14 12 4015 987 5 1938 3 8335 40 1 1 1 5280 706 1 1 1 1 5733 3 50 1 85 100877 17396 4691 1 1353 2 1 16 1782 1 3 38 23 8 32 47 787 947 1 1 206 9 1 3 2 81 2602 7 159 1 1 43 91 1 120 6869 6 2534 1092 1 6044 7 2 2 37 1 1 1 80 2 1 1270 15563 66 1 10293 1 10804 16134 4 1 1 1 9755 5633 1135 928 3 24 10 16
START
The answer lies in Russell Uhl's comment above. Your loop runs one time to many(this is your code):
for (( c=$zero; c<=${#ARRAY2[#]}; c++ ))
do
expr ${ARRAY2[$c]} - ${ARRAY[$c]}
done
To fix, you need to change the test condition from c <= ${#ARRAY2[#]} to c < ${#ARRAY2[#]}:
for (( c=$zero; c < ${#ARRAY2[#]}; c++ ))
do
echo $((${ARRAY2[$c]} - ${ARRAY[$c]}))
done
I've also changed the expr to use arithmetic evaluation builtin $((...)).
The test script (sum.sh):
#!/bin/bash
zero=0
ARRAY=()
ARRAY2=()
first="1 15 1 25 25 1 2 1 3541 853 94567 42 5 1 351 51 1 11 1 13 7 14 12 3999 983 5 1938 3 8287 40 1 1 1 5253 706 1 1 1 1 5717 3 50 1 85 100376 17334 4655 1 1345 2 1 16 1777 1 3 38 23 8 32 47 7
second="1 15 1 25 25 1 2 1 3555 859 95043 42 5 1 355 55 1 11 1 13 7 14 12 4015 987 5 1938 3 8335 40 1 1 1 5280 706 1 1 1 1 5733 3 50 1 85 100877 17396 4691 1 1353 2 1 16 1782 1 3 38 23 8 32 47
for i in $first; do
ARRAY+=($i)
done
# Alternately as chepner suggested:
ARRAY2=($second)
for (( c=$zero; c < ${#ARRAY2[#]}; c++ )); do
echo -n $((${ARRAY2[$c]} - ${ARRAY[$c]})) " "
done
Running it:
samveen#precise:/tmp$ echo $BASH_VERSION
4.2.25(1)-release
samveen#precise:/tmp$ bash sum.sh
0 0 0 0 0 0 0 0 14 6 476 0 0 0 4 4 0 0 0 0 0 0 0 16 4 0 0 0 48 0 0 0 0 27 0 0 0 0 0 16 0 0 0 0 501 62 36 0 8 0 0 0 5 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 280 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 115 0 0 55 0 10 73 0 0 0 0 1 16 12 2 0 0 0 0
EDIT:
* Added improvements from suggestions in comments.
I think the problem has to be when the two arrays don't have the same size. It's easy to reproduce that syntax error -- one of the operands for the minus operator is an empty string:
$ a=5; b=3; expr $a - $b
2
$ a=""; b=3; expr $a - $b
expr: syntax error
$ a=5; b=""; expr $a - $b
expr: syntax error
$ a=""; b=""; expr $a - $b
-
Try
ARRAY=( $(command to generate a list of numbers) )
sleep 1
ARRAY2=( $(command to generate a list of numbers) )
if (( ${#ARRAY[#]} != ${#ARRAY2[#]} )); then
echo "error: different size arrays!"
echo "ARRAY: ${#ARRAY[#]} (${ARRAY[*]})"
echo "ARRAY2: ${#ARRAY2[#]} (${ARRAY2[*]})"
fi
"The error occurs whenever the first array is smaller than the second" -- of course. You're looping from 0 to the array size of ARRAY2. When ARRAY has fewer elements, you'll eventually try to access an index that does not exist in the array. When you try to reference an unset variable, bash gives you the empty string.
$ a=(1 2 3)
$ b=(4 5 6 7)
$ i=2; expr ${a[i]} - ${b[i]}
-3
$ i=3; expr ${a[i]} - ${b[i]}
expr: syntax error

Average process speed is getting slower

I'm not good at English. So I ask for your patience and editing.
I have analysed census data of South Korea. I used 'adaboost' as a analysis method and adaboost was implemented for each cities. Target variable, independent variables, formula, options, the number of observation, etc, everything is same among cities. There is no difference. And I made a macro that implements adaboost for the cities one by one. The macro removes all objects except for itself before it starts to analyse the next city.
And I found that average process speed is getting slower as time goes on. I mean that the average time needed for cities 1-30 was around 10 minutes, but it became 25 minutes for the cities 80-100. So I terminated the R session and re-opened. I re-ran the macro from 80th city, then the average time for cities 80-100 was reduced to 10 minutes.
Why does this happen? How can I solve this problem? I need your help. Thanks in advance.
The r code and macro are as below. 'sgg' macro variable indicates city codes. Target variable has six categories. So I used 'one-others' method for multi-class classification.
memory.limit(size=4095)
library(gbm)
library(gtools)
dbset<-strmacro(sgg,sampnum,
expr=
{
setwd("C:\\Users\\Kim\\Desktop\\JQ\\");
db.sgg<-read.table('sgg.TXT', header=TRUE);
db.sgg<-subset(db.sgg, AGE>=10)
N<-nrow(db.sgg);
if(N>=sampnum)
{
db.sgg<-db.sgg[sample(1:N, sampnum),]
};
db.sgg$SEX<-factor(letters[db.sgg$SEX])
ordered(db.sgg$AREA);
db.sgg$josagu_attri_mod2<-factor(letters[db.sgg$josagu_attri_mod])
db.sgg$geocheo_type_mod2<-factor(letters[db.sgg$geocheo_type_mod])
db.sgg$dandok_type_mod2<-factor(letters[db.sgg$dandok_type_mod])
colnames(db.sgg)[10:15]<-c('FLC3.1','FLC3.3','FLC3.4','FLC3.5','FLC3.6','FLC3.7');
}
);
train<-strmacro(i, sgg,
expr={
res.sgg.i<-gbm(FLC3.i~SEX+AREA+AGE+josagu_attri_mod2+geocheo_type_mod2+dandok_type_mod2,
data=db.sgg, distribution='adaboost', n.trees=3000,shrinkage = 0.005,
cv.folds=5, keep.data=TRUE,
bag.fraction=0.7, interaction.depth=3);
BI.sgg.i<-gbm.perf(res.sgg.i, method='cv');
PRED.sgg.i<-predict.gbm(res.sgg.i, db.sgg, BI.sgg.i);
}
);
clean<-strmacro(sgg,
expr={
rm(BI.sgg.1);rm(BI.sgg.3);rm(BI.sgg.4);rm(BI.sgg.5);rm(BI.sgg.6);rm(BI.sgg.7);
rm(res.sgg.1);rm(res.sgg.3);rm(res.sgg.4);rm(res.sgg.5);rm(res.sgg.6);rm(res.sgg.7);
rm(PRED.sgg.1);rm(PRED.sgg.3);rm(PRED.sgg.4);rm(PRED.sgg.5);rm(PRED.sgg.6);rm(PRED.sgg.7);
rm(db.sgg);
}
);
all<-strmacro(sgg,num,
expr={
dbset(sgg,num);
train(1,sgg);train(3,sgg);train(4,sgg);train(5,sgg);train(6,sgg);train(7,sgg);
clean(sgg);
}
);
all(11010,3000)
all(11020,3000)
all(11030,3000)
Data is as below. This data is stored in '11010.txt'.
C3 mem_num josagu_attri_mod SEX AGE geocheo_type_mod dandok_type_mod C97 FLC3 FLC3_1 FLC3_3 FLC3_4 FLC_4 FLC3_6 FLC3_7 AREA
1 3 3 1 14 1 1 49 3 0 0 1 0 0 0 2
1 1 1 2 44 1 1 49 3 0 0 1 0 0 0 2
2 1 1 1 67 1 1 46 6 0 0 0 0 0 1 2
2 2 2 2 60 1 1 46 6 0 0 0 0 0 1 2
3 1 1 2 65 1 1 49 6 0 0 0 0 0 1 2
4 1 1 1 66 1 4 16 6 0 0 0 0 0 1 1
4 2 2 2 61 1 4 16 6 0 0 0 0 0 1 1
5 1 1 2 32 1 6 15 1 1 0 0 0 0 0 1
7 2 2 1 55 1 6 59 5 0 0 0 0 1 0 2
7 4 3 1 23 1 6 59 5 0 0 0 0 1 0 2
7 1 1 2 50 1 6 59 5 0 0 0 0 1 0 2
7 3 3 2 24 1 6 59 5 0 0 0 0 1 0 2
8 1 1 1 68 1 1 46 6 0 0 0 0 0 1 2
8 2 2 2 64 1 1 46 6 0 0 0 0 0 1 2
9 1 1 1 57 1 1 59 5 0 0 0 0 1 0 2
9 2 2 2 55 1 1 59 5 0 0 0 0 1 0 2
9 3 3 2 28 1 1 59 5 0 0 0 0 1 0 2
10 2 3 1 17 1 6 16 4 0 0 0 1 0 0 1
10 1 1 2 41 1 6 16 4 0 0 0 1 0 0 1
12 1 1 2 24 1 6 16 1 1 0 0 0 0 0 1
14 1 1 1 72 2 1 119 6 0 0 0 0 0 1 4
14 2 2 2 72 2 1 119 6 0 0 0 0 0 1 4
17 2 2 1 42 1 4 50 3 0 0 1 0 0 0 2
17 1 1 2 41 1 4 50 3 0 0 1 0 0 0 2
19 1 1 1 36 1 4 50 2 0 1 0 0 0 0 2
19 2 2 2 27 1 4 50 2 0 1 0 0 0 0 2
20 2 2 1 52 1 1 50 5 0 0 0 0 1 0 2
20 3 3 1 21 1 1 50 5 0 0 0 0 1 0 2
20 4 3 1 24 1 1 50 5 0 0 0 0 1 0 2
20 1 1 2 50 1 1 50 5 0 0 0 0 1 0 2
21 1 1 1 38 1 6 59 3 0 0 1 0 0 0 2
21 5 3 1 14 1 6 59 3 0 0 1 0 0 0 2
21 2 2 2 39 1 6 59 3 0 0 1 0 0 0 2
21 3 3 2 13 1 6 59 3 0 0 1 0 0 0 2
22 1 1 1 42 1 4 50 2 0 1 0 0 0 0 2
22 2 2 2 37 1 4 50 2 0 1 0 0 0 0 2
23 1 1 2 70 1 6 50 6 0 0 0 0 0 1 2
24 1 1 2 49 1 4 50 5 0 0 0 0 1 0 2
24 2 3 2 22 1 4 50 5 0 0 0 0 1 0 2
25 1 1 1 67 4 1 66 5 0 0 0 0 1 0 2
25 4 3 1 41 4 1 66 5 0 0 0 0 1 0 2
25 2 2 2 66 4 1 66 5 0 0 0 0 1 0 2
25 3 3 2 43 4 1 66 5 0 0 0 0 1 0 2
27 1 1 1 81 1 1 43 6 0 0 0 0 0 1 2
27 2 2 2 80 1 1 43 6 0 0 0 0 0 1 2
29 1 1 1 48 1 2 43 4 0 0 0 1 0 0 2
29 3 3 1 17 1 2 43 4 0 0 0 1 0 0 2
29 2 2 2 45 1 2 43 4 0 0 0 1 0 0 2
29 4 3 2 15 1 2 43 4 0 0 0 1 0 0 2
32 1 1 1 67 2 1 85 6 0 0 0 0 0 1 3
32 2 2 2 60 2 1 85 6 0 0 0 0 0 1 3
33 1 1 1 30 2 1 82 2 0 1 0 0 0 0 3
33 2 2 2 30 2 1 82 2 0 1 0 0 0 0 3
34 1 1 1 55 2 1 85 5 0 0 0 0 1 0 3
34 2 2 2 48 2 1 85 5 0 0 0 0 1 0 3
34 3 3 2 28 2 1 85 5 0 0 0 0 1 0 3
37 1 1 1 55 2 4 82 5 0 0 0 0 1 0 3
37 3 3 1 21 2 4 82 5 0 0 0 0 1 0 3
37 2 2 2 51 2 4 82 5 0 0 0 0 1 0 3
38 1 1 1 41 2 4 50 2 0 1 0 0 0 0 2
38 2 2 2 32 2 4 50 2 0 1 0 0 0 0 2
40 2 3 1 14 2 1 50 4 0 0 0 1 0 0 2
40 1 1 2 45 2 1 50 4 0 0 0 1 0 0 2
40 3 3 2 15 2 1 50 4 0 0 0 1 0 0 2
41 1 1 1 46 2 4 40 4 0 0 0 1 0 0 2
41 3 3 1 17 2 4 40 4 0 0 0 1 0 0 2
41 2 2 2 44 2 4 40 4 0 0 0 1 0 0 2
41 4 3 2 14 2 4 40 4 0 0 0 1 0 0 2
42 2 3 1 17 2 6 50 5 0 0 0 0 1 0 2
42 1 1 2 41 2 6 50 5 0 0 0 0 1 0 2
42 3 3 2 18 2 6 50 5 0 0 0 0 1 0 2
43 1 1 1 34 2 4 50 2 0 1 0 0 0 0 2
43 2 2 2 35 2 4 50 2 0 1 0 0 0 0 2
44 1 1 1 46 2 1 40 4 0 0 0 1 0 0 2
44 2 2 2 44 2 1 40 4 0 0 0 1 0 0 2
44 3 3 2 13 2 1 40 4 0 0 0 1 0 0 2
45 1 1 1 43 2 1 72 3 0 0 1 0 0 0 3
45 2 2 2 38 2 1 72 3 0 0 1 0 0 0 3
45 3 3 2 12 2 1 72 3 0 0 1 0 0 0 3
46 1 1 1 55 2 4 61 4 0 0 0 1 0 0 2
46 3 3 1 19 2 4 61 4 0 0 0 1 0 0 2
46 2 2 2 54 2 4 61 4 0 0 0 1 0 0 2
46 4 3 2 18 2 4 61 4 0 0 0 1 0 0 2
47 1 1 1 30 2 4 61 1 1 0 0 0 0 0 2
47 2 2 2 30 2 4 61 1 1 0 0 0 0 0 2
48 1 1 1 64 2 4 72 5 0 0 0 0 1 0 3
48 2 2 2 54 2 4 72 5 0 0 0 0 1 0 3
48 3 3 2 23 2 4 72 5 0 0 0 0 1 0 3
49 1 1 1 39 2 4 61 3 0 0 1 0 0 0 2
49 2 2 2 36 2 4 61 3 0 0 1 0 0 0 2
50 1 1 1 63 2 1 72 6 0 0 0 0 0 1 3
50 2 2 2 59 2 1 72 6 0 0 0 0 0 1 3
52 1 1 2 53 2 6 58 5 0 0 0 0 1 0 2
52 2 3 2 26 2 6 58 5 0 0 0 0 1 0 2
53 2 3 1 45 2 1 58 5 0 0 0 0 1 0 2
53 1 1 2 69 2 1 58 5 0 0 0 0 1 0 2
54 1 1 2 55 2 6 58 5 0 0 0 0 1 0 2
54 2 3 2 29 2 6 58 5 0 0 0 0 1 0 2
56 3 3 1 16 2 4 58 4 0 0 0 1 0 0 2
56 1 1 2 45 2 4 58 4 0 0 0 1 0 0 2
56 2 3 2 12 2 4 58 4 0 0 0 1 0 0 2
59 1 1 1 56 2 1 50 5 0 0 0 0 1 0 2
59 3 3 1 29 2 1 50 5 0 0 0 0 1 0 2
59 2 2 2 53 2 1 50 5 0 0 0 0 1 0 2
62 1 1 1 59 2 1 50 5 0 0 0 0 1 0 2
62 2 2 2 54 2 1 50 5 0 0 0 0 1 0 2
62 3 3 2 26 2 1 50 5 0 0 0 0 1 0 2
63 1 1 1 42 2 4 50 3 0 0 1 0 0 0 2
63 3 3 1 10 2 4 50 3 0 0 1 0 0 0 2
63 2 2 2 37 2 4 50 3 0 0 1 0 0 0 2
64 1 1 1 31 2 6 50 2 0 1 0 0 0 0 2
64 2 2 2 33 2 6 50 2 0 1 0 0 0 0 2
65 1 1 1 60 2 1 50 5 0 0 0 0 1 0 2
65 3 3 1 27 2 1 50 5 0 0 0 0 1 0 2
65 2 2 2 57 2 1 50 5 0 0 0 0 1 0 2
66 1 1 1 49 2 1 50 5 0 0 0 0 1 0 2
66 2 2 2 54 2 1 50 5 0 0 0 0 1 0 2
66 3 3 2 25 2 1 50 5 0 0 0 0 1 0 2
67 1 1 1 67 2 1 120 6 0 0 0 0 0 1 4
67 2 2 2 65 2 1 120 6 0 0 0 0 0 1 4
68 1 1 1 49 2 4 98 5 0 0 0 0 1 0 3
68 4 3 1 18 2 4 98 5 0 0 0 0 1 0 3
68 2 2 2 48 2 4 98 5 0 0 0 0 1 0 3
68 3 3 2 20 2 4 98 5 0 0 0 0 1 0 3
70 1 1 1 66 2 1 101 6 0 0 0 0 0 1 4
70 2 2 2 56 2 1 101 6 0 0 0 0 0 1 4
71 1 1 1 37 2 2 101 2 0 1 0 0 0 0 4
71 2 2 2 37 2 2 101 2 0 1 0 0 0 0 4
72 1 1 1 74 1 1 91 5 0 0 0 0 1 0 3
72 3 3 1 41 1 1 91 5 0 0 0 0 1 0 3
72 2 2 2 71 1 1 91 5 0 0 0 0 1 0 3
73 1 1 1 60 1 1 91 5 0 0 0 0 1 0 3
73 3 3 1 27 1 1 91 5 0 0 0 0 1 0 3
73 2 2 2 57 1 1 91 5 0 0 0 0 1 0 3
74 1 1 1 61 2 1 119 5 0 0 0 0 1 0 4
74 4 3 1 30 2 1 119 5 0 0 0 0 1 0 4
74 2 2 2 56 2 1 119 5 0 0 0 0 1 0 4
74 3 3 2 32 2 1 119 5 0 0 0 0 1 0 4
75 2 2 1 72 1 1 99 6 0 0 0 0 0 1 3
75 1 1 2 71 1 1 99 6 0 0 0 0 0 1 3
78 1 1 2 28 1 4 15 1 1 0 0 0 0 0 1
80 1 1 1 68 1 1 92 6 0 0 0 0 0 1 3
80 2 2 2 66 1 1 92 6 0 0 0 0 0 1 3
81 2 3 1 27 1 6 46 5 0 0 0 0 1 0 2
81 3 3 1 29 1 6 46 5 0 0 0 0 1 0 2
81 1 1 2 57 1 6 46 5 0 0 0 0 1 0 2
83 1 1 1 30 1 4 43 2 0 1 0 0 0 0 2
83 2 2 2 30 1 4 43 2 0 1 0 0 0 0 2
84 1 1 2 64 1 4 33 6 0 0 0 0 0 1 2
85 1 1 1 35 1 6 26 2 0 1 0 0 0 0 1
85 2 2 2 33 1 6 26 2 0 1 0 0 0 0 1
88 1 1 1 52 2 1 145 5 0 0 0 0 1 0 5
88 2 2 2 49 2 1 145 5 0 0 0 0 1 0 5
88 3 3 2 25 2 1 145 5 0 0 0 0 1 0 5
89 2 3 1 13 2 1 145 4 0 0 0 1 0 0 5
89 3 3 1 22 2 1 145 4 0 0 0 1 0 0 5
89 1 1 2 47 2 1 145 4 0 0 0 1 0 0 5
90 1 1 1 57 2 1 83 5 0 0 0 0 1 0 3
90 3 3 1 25 2 1 83 5 0 0 0 0 1 0 3
90 4 3 1 23 2 1 83 5 0 0 0 0 1 0 3
90 2 2 2 52 2 1 83 5 0 0 0 0 1 0 3
91 1 1 1 33 2 4 83 2 0 1 0 0 0 0 3
91 2 2 2 32 2 4 83 2 0 1 0 0 0 0 3
92 1 1 1 35 2 1 83 3 0 0 1 0 0 0 3
92 2 2 2 34 2 1 83 3 0 0 1 0 0 0 3
93 1 1 1 35 2 4 83 2 0 1 0 0 0 0 3
93 2 2 2 35 2 4 83 2 0 1 0 0 0 0 3
94 1 1 1 55 2 4 83 5 0 0 0 0 1 0 3
94 2 2 2 53 2 4 83 5 0 0 0 0 1 0 3
94 3 3 2 27 2 4 83 5 0 0 0 0 1 0 3
94 4 3 2 24 2 4 83 5 0 0 0 0 1 0 3
95 1 1 1 49 2 1 83 4 0 0 0 1 0 0 3
95 2 3 1 21 2 1 83 4 0 0 0 1 0 0 3
95 3 3 2 15 2 1 83 4 0 0 0 1 0 0 3
96 1 1 1 35 2 1 83 1 1 0 0 0 0 0 3
96 2 2 2 35 2 1 83 1 1 0 0 0 0 0 3
97 1 1 1 54 2 1 83 4 0 0 0 1 0 0 3
97 4 3 1 13 2 1 83 4 0 0 0 1 0 0 3
97 2 2 2 51 2 1 83 4 0 0 0 1 0 0 3
97 3 3 2 21 2 1 83 4 0 0 0 1 0 0 3
98 1 1 1 49 4 1 85 4 0 0 0 1 0 0 3
98 2 2 2 42 4 1 85 4 0 0 0 1 0 0 3
98 3 3 2 20 4 1 85 4 0 0 0 1 0 0 3
98 4 3 2 17 4 1 85 4 0 0 0 1 0 0 3
99 1 1 1 69 4 1 96 6 0 0 0 0 0 1 3
99 2 2 2 66 4 1 96 6 0 0 0 0 0 1 3
100 1 1 1 69 4 1 96 6 0 0 0 0 0 1 3
100 2 2 2 60 4 1 96 6 0 0 0 0 0 1 3
101 1 1 1 32 4 4 33 1 1 0 0 0 0 0 2
101 2 2 2 32 4 4 33 1 1 0 0 0 0 0 2
103 1 1 1 39 1 6 27 4 0 0 0 1 0 0 1
103 2 2 2 34 1 6 27 4 0 0 0 1 0 0 1
103 3 3 2 13 1 6 27 4 0 0 0 1 0 0 1
105 2 3 1 19 1 6 27 5 0 0 0 0 1 0 1
105 3 3 1 25 1 6 27 5 0 0 0 0 1 0 1
105 1 1 2 49 1 6 27 5 0 0 0 0 1 0 1
106 1 1 1 28 1 6 23 1 1 0 0 0 0 0 1
107 1 1 1 49 2 1 78 5 0 0 0 0 1 0 3
107 3 3 1 18 2 1 78 5 0 0 0 0 1 0 3
107 4 3 1 21 2 1 78 5 0 0 0 0 1 0 3
107 2 2 2 49 2 1 78 5 0 0 0 0 1 0 3
108 1 1 1 33 2 4 78 1 1 0 0 0 0 0 3
108 2 2 2 28 2 4 78 1 1 0 0 0 0 0 3
109 1 1 1 55 2 1 78 5 0 0 0 0 1 0 3
109 3 3 1 21 2 1 78 5 0 0 0 0 1 0 3
109 2 2 2 53 2 1 78 5 0 0 0 0 1 0 3
110 1 1 1 48 2 1 78 4 0 0 0 1 0 0 3
110 2 2 2 45 2 1 78 4 0 0 0 1 0 0 3
110 3 3 2 20 2 1 78 4 0 0 0 1 0 0 3
110 4 3 2 15 2 1 78 4 0 0 0 1 0 0 3
111 1 1 1 37 2 4 78 2 0 1 0 0 0 0 3
111 2 2 2 34 2 4 78 2 0 1 0 0 0 0 3
112 1 1 1 28 4 4 82 2 0 1 0 0 0 0 3
112 2 2 2 30 4 4 82 2 0 1 0 0 0 0 3
113 1 1 1 64 4 1 63 5 0 0 0 0 1 0 2
113 3 3 1 26 4 1 63 5 0 0 0 0 1 0 2
113 2 2 2 55 4 1 63 5 0 0 0 0 1 0 2
113 4 3 2 24 4 1 63 5 0 0 0 0 1 0 2
115 1 1 1 42 4 4 58 3 0 0 1 0 0 0 2
115 4 3 1 10 4 4 58 3 0 0 1 0 0 0 2
115 2 2 2 39 4 4 58 3 0 0 1 0 0 0 2
115 3 3 2 12 4 4 58 3 0 0 1 0 0 0 2
116 1 1 1 56 4 1 63 5 0 0 0 0 1 0 2
116 3 3 1 29 4 1 63 5 0 0 0 0 1 0 2
116 2 2 2 51 4 1 63 5 0 0 0 0 1 0 2
118 1 1 1 75 4 1 70 6 0 0 0 0 0 1 3
118 2 2 2 74 4 1 70 6 0 0 0 0 0 1 3
119 1 1 1 49 1 4 66 4 0 0 0 1 0 0 2
119 3 3 1 18 1 4 66 4 0 0 0 1 0 0 2
119 4 3 1 17 1 4 66 4 0 0 0 1 0 0 2
119 2 2 2 47 1 4 66 4 0 0 0 1 0 0 2
120 2 3 1 32 4 1 56 5 0 0 0 0 1 0 2
120 1 1 2 64 4 1 56 5 0 0 0 0 1 0 2
120 3 3 2 41 4 1 56 5 0 0 0 0 1 0 2
121 1 1 1 44 4 4 56 4 0 0 0 1 0 0 2
121 3 3 1 17 4 4 56 4 0 0 0 1 0 0 2
121 4 3 1 16 4 4 56 4 0 0 0 1 0 0 2
121 2 2 2 42 4 4 56 4 0 0 0 1 0 0 2
123 1 1 1 44 4 4 56 3 0 0 1 0 0 0 2
123 2 2 2 43 4 4 56 3 0 0 1 0 0 0 2
123 3 3 2 11 4 4 56 3 0 0 1 0 0 0 2
123 5 3 2 14 4 4 56 3 0 0 1 0 0 0 2
125 2 3 1 21 1 4 30 5 0 0 0 0 1 0 1
125 1 1 2 48 1 4 30 5 0 0 0 0 1 0 1
126 1 1 1 49 1 4 30 5 0 0 0 0 1 0 1
126 2 2 2 44 1 4 30 5 0 0 0 0 1 0 1
126 3 3 2 25 1 4 30 5 0 0 0 0 1 0 1
127 1 1 1 75 1 6 25 6 0 0 0 0 0 1 1
128 1 1 1 49 2 1 82 3 0 0 1 0 0 0 3
128 3 3 1 12 2 1 82 3 0 0 1 0 0 0 3
128 2 2 2 43 2 1 82 3 0 0 1 0 0 0 3
129 1 1 2 66 2 1 82 6 0 0 0 0 0 1 3
130 1 1 1 36 2 4 82 3 0 0 1 0 0 0 3
130 2 2 2 41 2 4 82 3 0 0 1 0 0 0 3
130 3 3 2 11 2 4 82 3 0 0 1 0 0 0 3
132 1 1 2 64 2 1 82 6 0 0 0 0 0 1 3
133 1 1 1 34 2 1 82 2 0 1 0 0 0 0 3
133 2 2 2 35 2 1 82 2 0 1 0 0 0 0 3
134 1 1 1 37 2 4 82 2 0 1 0 0 0 0 3
134 2 2 2 35 2 4 82 2 0 1 0 0 0 0 3
135 1 1 1 38 2 4 82 2 0 1 0 0 0 0 3
135 2 2 2 37 2 4 82 2 0 1 0 0 0 0 3
136 1 1 1 31 2 6 83 1 1 0 0 0 0 0 3
136 2 2 2 29 2 6 83 1 1 0 0 0 0 0 3
137 2 2 1 47 2 5 30 3 0 0 1 0 0 0 1
137 3 3 1 19 2 5 30 3 0 0 1 0 0 0 1
137 1 1 2 43 2 5 30 3 0 0 1 0 0 0 1
137 4 3 2 10 2 5 30 3 0 0 1 0 0 0 1
138 2 3 1 24 2 5 30 5 0 0 0 0 1 0 1
138 1 1 2 54 2 5 30 5 0 0 0 0 1 0 1
139 1 1 2 44 2 5 30 4 0 0 0 1 0 0 1
139 2 3 2 13 2 5 30 4 0 0 0 1 0 0 1
139 3 3 2 15 2 5 30 4 0 0 0 1 0 0 1
140 1 1 2 55 2 5 30 5 0 0 0 0 1 0 1
140 2 3 2 29 2 5 30 5 0 0 0 0 1 0 1
141 1 1 1 45 2 5 30 4 0 0 0 1 0 0 1
141 2 2 2 43 2 5 30 4 0 0 0 1 0 0 1
141 3 3 2 15 2 5 30 4 0 0 0 1 0 0 1
141 4 3 2 13 2 5 30 4 0 0 0 1 0 0 1
142 1 1 2 52 2 5 30 4 0 0 0 1 0 0 1
142 2 3 2 23 2 5 30 4 0 0 0 1 0 0 1
142 3 3 2 18 2 5 30 4 0 0 0 1 0 0 1
144 1 1 1 52 2 5 30 5 0 0 0 0 1 0 1
144 4 3 1 19 2 5 30 5 0 0 0 0 1 0 1
144 2 2 2 48 2 5 30 5 0 0 0 0 1 0 1
144 3 3 2 22 2 5 30 5 0 0 0 0 1 0 1
145 1 1 1 61 2 4 72 6 0 0 0 0 0 1 3
145 2 2 2 55 2 4 72 6 0 0 0 0 0 1 3
147 1 1 1 32 2 4 85 1 1 0 0 0 0 0 3
147 2 2 2 33 2 4 85 1 1 0 0 0 0 0 3
148 1 1 1 30 2 1 85 1 1 0 0 0 0 0 3
148 2 2 2 35 2 1 85 1 1 0 0 0 0 0 3
149 2 2 1 54 1 1 46 4 0 0 0 1 0 0 2
149 1 1 2 51 1 1 46 4 0 0 0 1 0 0 2
149 3 3 2 20 1 1 46 4 0 0 0 1 0 0 2
149 4 3 2 13 1 1 46 4 0 0 0 1 0 0 2
149 5 3 2 27 1 1 46 4 0 0 0 1 0 0 2
152 1 1 1 72 1 1 99 5 0 0 0 0 1 0 3
152 3 3 1 39 1 1 99 5 0 0 0 0 1 0 3
152 2 2 2 69 1 1 99 5 0 0 0 0 1 0 3
153 1 1 1 28 1 6 49 2 0 1 0 0 0 0 2
153 2 2 2 27 1 6 49 2 0 1 0 0 0 0 2
155 1 1 2 54 1 6 27 5 0 0 0 0 1 0 1
155 2 3 2 29 1 6 27 5 0 0 0 0 1 0 1
156 1 1 1 48 1 1 76 3 0 0 1 0 0 0 3
156 3 3 1 17 1 1 76 3 0 0 1 0 0 0 3
156 2 2 2 43 1 1 76 3 0 0 1 0 0 0 3
158 1 1 1 52 1 4 50 5 0 0 0 0 1 0 2
158 3 3 1 23 1 4 50 5 0 0 0 0 1 0 2
158 2 2 2 47 1 4 50 5 0 0 0 0 1 0 2
158 4 3 2 20 1 4 50 5 0 0 0 0 1 0 2
159 1 1 1 54 1 6 40 5 0 0 0 0 1 0 2
159 3 3 1 30 1 6 40 5 0 0 0 0 1 0 2
159 2 2 2 51 1 6 40 5 0 0 0 0 1 0 2
159 4 3 2 28 1 6 40 5 0 0 0 0 1 0 2
160 1 1 1 35 1 4 36 2 0 1 0 0 0 0 2
160 2 2 2 34 1 4 36 2 0 1 0 0 0 0 2
162 1 1 1 74 1 1 76 6 0 0 0 0 0 1 3
162 2 2 2 74 1 1 76 6 0 0 0 0 0 1 3
163 3 3 1 16 1 4 40 4 0 0 0 1 0 0 2
163 1 1 2 44 1 4 40 4 0 0 0 1 0 0 2
163 2 3 2 20 1 4 40 4 0 0 0 1 0 0 2
165 1 1 1 72 2 1 114 6 0 0 0 0 0 1 4
165 2 2 2 69 2 1 114 6 0 0 0 0 0 1 4
166 1 1 1 59 2 4 114 5 0 0 0 0 1 0 4
166 3 3 1 26 2 4 114 5 0 0 0 0 1 0 4
166 2 2 2 54 2 4 114 5 0 0 0 0 1 0 4
166 4 3 2 28 2 4 114 5 0 0 0 0 1 0 4
168 1 1 1 55 2 1 114 5 0 0 0 0 1 0 4
168 3 3 1 28 2 1 114 5 0 0 0 0 1 0 4
168 2 2 2 49 2 1 114 5 0 0 0 0 1 0 4
168 4 3 2 26 2 1 114 5 0 0 0 0 1 0 4
171 1 1 1 57 2 1 114 5 0 0 0 0 1 0 4
171 3 3 1 26 2 1 114 5 0 0 0 0 1 0 4
171 2 2 2 50 2 1 114 5 0 0 0 0 1 0 4
172 1 1 1 58 2 1 114 5 0 0 0 0 1 0 4
172 3 3 1 22 2 1 114 5 0 0 0 0 1 0 4
172 4 3 1 25 2 1 114 5 0 0 0 0 1 0 4
172 2 2 2 53 2 1 114 5 0 0 0 0 1 0 4
172 5 3 2 27 2 1 114 5 0 0 0 0 1 0 4
173 1 1 1 45 3 4 59 3 0 0 1 0 0 0 2
173 3 3 1 12 3 4 59 3 0 0 1 0 0 0 2
173 2 2 2 33 3 4 59 3 0 0 1 0 0 0 2
174 1 1 2 80 3 1 59 6 0 0 0 0 0 1 2
175 1 1 1 71 3 1 59 5 0 0 0 0 1 0 2
175 2 2 2 67 3 1 59 5 0 0 0 0 1 0 2
175 3 3 2 28 3 1 59 5 0 0 0 0 1 0 2
176 1 1 1 55 3 1 59 4 0 0 0 1 0 0 2
176 3 3 1 25 3 1 59 4 0 0 0 1 0 0 2
176 2 2 2 50 3 1 59 4 0 0 0 1 0 0 2
176 4 3 2 17 3 1 59 4 0 0 0 1 0 0 2
178 2 2 1 60 3 1 59 5 0 0 0 0 1 0 2
178 3 3 1 26 3 1 59 5 0 0 0 0 1 0 2
178 4 3 1 23 3 1 59 5 0 0 0 0 1 0 2
178 1 1 2 50 3 1 59 5 0 0 0 0 1 0 2
179 1 1 1 52 3 1 59 4 0 0 0 1 0 0 2
179 3 3 1 18 3 1 59 4 0 0 0 1 0 0 2
179 2 2 2 43 3 1 59 4 0 0 0 1 0 0 2
179 4 3 2 17 3 1 59 4 0 0 0 1 0 0 2
180 1 1 1 60 3 1 59 5 0 0 0 0 1 0 2
180 3 3 1 27 3 1 59 5 0 0 0 0 1 0 2
180 2 2 2 60 3 1 59 5 0 0 0 0 1 0 2
182 1 1 2 47 4 1 53 3 0 0 1 0 0 0 2
182 2 3 2 10 4 1 53 3 0 0 1 0 0 0 2
184 1 1 1 36 4 4 59 2 0 1 0 0 0 0 2
184 2 2 2 38 4 4 59 2 0 1 0 0 0 0 2
185 1 1 1 43 4 1 59 3 0 0 1 0 0 0 2
185 3 3 1 15 4 1 59 3 0 0 1 0 0 0 2
185 4 3 1 11 4 1 59 3 0 0 1 0 0 0 2
185 2 2 2 41 4 1 59 3 0 0 1 0 0 0 2
186 1 1 1 36 4 1 50 2 0 1 0 0 0 0 2
186 2 2 2 32 4 1 50 2 0 1 0 0 0 0 2
186 5 3 2 10 4 1 50 2 0 1 0 0 0 0 2
187 1 1 2 55 4 1 53 5 0 0 0 0 1 0 2
187 2 3 2 25 4 1 53 5 0 0 0 0 1 0 2
187 3 3 2 27 4 1 53 5 0 0 0 0 1 0 2
188 1 1 1 67 4 1 53 6 0 0 0 0 0 1 2
188 2 2 2 64 4 1 53 6 0 0 0 0 0 1 2
189 1 1 1 69 4 1 50 5 0 0 0 0 1 0 2
189 3 3 1 34 4 1 50 5 0 0 0 0 1 0 2
189 2 2 2 57 4 1 50 5 0 0 0 0 1 0 2
190 1 1 1 62 4 1 50 5 0 0 0 0 1 0 2
190 3 3 1 27 4 1 50 5 0 0 0 0 1 0 2
190 2 2 2 55 4 1 50 5 0 0 0 0 1 0 2
191 1 1 1 38 3 1 54 2 0 1 0 0 0 0 2
191 2 2 2 36 3 1 54 2 0 1 0 0 0 0 2
192 1 1 2 69 3 4 54 6 0 0 0 0 0 1 2
193 1 1 1 58 3 4 54 5 0 0 0 0 1 0 2
193 3 3 1 27 3 4 54 5 0 0 0 0 1 0 2
193 4 3 1 24 3 4 54 5 0 0 0 0 1 0 2
193 2 2 2 50 3 4 54 5 0 0 0 0 1 0 2
194 1 1 1 77 3 1 54 6 0 0 0 0 0 1 2
194 2 2 2 77 3 1 54 6 0 0 0 0 0 1 2
196 1 1 1 63 4 1 73 5 0 0 0 0 1 0 3
196 3 3 1 37 4 1 73 5 0 0 0 0 1 0 3
196 4 3 1 33 4 1 73 5 0 0 0 0 1 0 3
196 2 2 2 62 4 1 73 5 0 0 0 0 1 0 3
197 1 1 1 66 4 1 73 6 0 0 0 0 0 1 3
197 2 2 2 59 4 1 73 6 0 0 0 0 0 1 3
198 1 1 1 52 4 1 73 3 0 0 1 0 0 0 3
198 3 3 1 13 4 1 73 3 0 0 1 0 0 0 3
198 2 2 2 47 4 1 73 3 0 0 1 0 0 0 3
198 4 3 2 12 4 1 73 3 0 0 1 0 0 0 3
199 1 1 1 43 4 4 73 3 0 0 1 0 0 0 3
199 2 2 2 41 4 4 73 3 0 0 1 0 0 0 3
199 3 3 2 11 4 4 73 3 0 0 1 0 0 0 3
200 2 3 1 26 4 1 73 5 0 0 0 0 1 0 3
200 3 3 1 28 4 1 73 5 0 0 0 0 1 0 3
200 1 1 2 53 4 1 73 5 0 0 0 0 1 0 3
201 1 1 1 53 4 1 73 5 0 0 0 0 1 0 3
201 3 3 1 27 4 1 73 5 0 0 0 0 1 0 3
201 2 2 2 50 4 1 73 5 0 0 0 0 1 0 3
202 1 1 1 77 4 1 73 5 0 0 0 0 1 0 3
202 3 3 1 35 4 1 73 5 0 0 0 0 1 0 3
202 2 2 2 60 4 1 73 5 0 0 0 0 1 0 3
204 1 1 1 56 4 1 53 5 0 0 0 0 1 0 2
204 2 2 2 53 4 1 53 5 0 0 0 0 1 0 2
204 3 3 2 22 4 1 53 5 0 0 0 0 1 0 2
205 1 1 1 60 4 4 66 5 0 0 0 0 1 0 2
205 3 3 1 29 4 4 66 5 0 0 0 0 1 0 2
205 4 3 1 27 4 4 66 5 0 0 0 0 1 0 2
205 2 2 2 56 4 4 66 5 0 0 0 0 1 0 2
206 1 1 1 67 4 1 76 6 0 0 0 0 0 1 3
206 2 2 2 67 4 1 76 6 0 0 0 0 0 1 3
208 1 1 1 46 4 1 66 4 0 0 0 1 0 0 2
208 4 3 1 14 4 1 66 4 0 0 0 1 0 0 2
208 2 2 2 45 4 1 66 4 0 0 0 1 0 0 2
208 3 3 2 17 4 1 66 4 0 0 0 1 0 0 2
209 1 1 1 42 4 4 56 2 0 1 0 0 0 0 2
209 3 3 1 10 4 4 56 2 0 1 0 0 0 0 2
209 2 2 2 38 4 4 56 2 0 1 0 0 0 0 2
210 3 3 1 12 4 1 56 3 0 0 1 0 0 0 2
210 1 1 2 40 4 1 56 3 0 0 1 0 0 0 2
210 2 3 2 10 4 1 56 3 0 0 1 0 0 0 2
212 1 1 2 37 1 4 63 2 0 1 0 0 0 0 2
214 1 1 1 63 3 1 40 6 0 0 0 0 0 1 2
215 1 1 1 62 3 1 40 5 0 0 0 0 1 0 2
215 3 3 1 28 3 1 40 5 0 0 0 0 1 0 2
215 2 2 2 57 3 1 40 5 0 0 0 0 1 0 2
216 1 1 2 71 3 1 40 6 0 0 0 0 0 1 2
217 1 1 2 49 4 1 40 5 0 0 0 0 1 0 2
217 2 3 2 24 4 1 40 5 0 0 0 0 1 0 2
218 1 1 1 74 1 1 37 6 0 0 0 0 0 1 2
218 2 2 2 67 1 1 37 6 0 0 0 0 0 1 2
220 1 1 1 51 4 4 66 4 0 0 0 1 0 0 2
220 4 3 1 13 4 4 66 4 0 0 0 1 0 0 2
220 5 3 1 18 4 4 66 4 0 0 0 1 0 0 2
220 2 2 2 49 4 4 66 4 0 0 0 1 0 0 2
220 3 3 2 16 4 4 66 4 0 0 0 1 0 0 2
221 1 1 2 81 1 6 40 6 0 0 0 0 0 1 2
222 1 1 1 45 2 1 85 3 0 0 1 0 0 0 3
222 4 3 1 10 2 1 85 3 0 0 1 0 0 0 3
222 2 2 2 41 2 1 85 3 0 0 1 0 0 0 3
222 3 3 2 15 2 1 85 3 0 0 1 0 0 0 3
223 1 1 2 51 2 1 85 5 0 0 0 0 1 0 3
223 2 3 2 25 2 1 85 5 0 0 0 0 1 0 3
224 2 3 1 12 2 4 85 4 0 0 0 1 0 0 3
224 1 1 2 47 2 4 85 4 0 0 0 1 0 0 3
224 3 3 2 18 2 4 85 4 0 0 0 1 0 0 3
225 1 1 1 68 2 1 85 6 0 0 0 0 0 1 3
225 2 2 2 67 2 1 85 6 0 0 0 0 0 1 3
226 1 1 1 50 2 1 85 4 0 0 0 1 0 0 3
226 4 3 1 17 2 1 85 4 0 0 0 1 0 0 3
226 2 2 2 46 2 1 85 4 0 0 0 1 0 0 3
226 3 3 2 19 2 1 85 4 0 0 0 1 0 0 3
229 2 2 1 67 2 1 85 5 0 0 0 0 1 0 3
229 1 1 2 57 2 1 85 5 0 0 0 0 1 0 3
229 3 3 2 37 2 1 85 5 0 0 0 0 1 0 3
232 1 1 1 54 2 1 86 5 0 0 0 0 1 0 3
232 2 2 2 53 2 1 86 5 0 0 0 0 1 0 3
232 3 3 2 29 2 1 86 5 0 0 0 0 1 0 3
233 1 1 1 57 2 1 86 5 0 0 0 0 1 0 3
233 2 2 2 52 2 1 86 5 0 0 0 0 1 0 3
233 3 3 2 24 2 1 86 5 0 0 0 0 1 0 3
235 1 1 2 51 2 1 86 3 0 0 1 0 0 0 3
236 1 1 1 41 2 4 86 2 0 1 0 0 0 0 3
236 5 3 1 12 2 4 86 2 0 1 0 0 0 0 3
236 2 2 2 39 2 4 86 2 0 1 0 0 0 0 3
236 3 3 2 10 2 4 86 2 0 1 0 0 0 0 3
237 1 1 1 48 2 1 86 4 0 0 0 1 0 0 3
237 2 2 2 48 2 1 86 4 0 0 0 1 0 0 3
237 3 3 2 20 2 1 86 4 0 0 0 1 0 0 3
237 4 3 2 16 2 1 86 4 0 0 0 1 0 0 3
238 1 1 2 53 4 1 50 5 0 0 0 0 1 0 2
238 2 3 2 29 4 1 50 5 0 0 0 0 1 0 2
240 2 3 1 31 4 1 50 5 0 0 0 0 1 0 2
240 1 1 2 61 4 1 50 5 0 0 0 0 1 0 2
241 2 3 1 24 4 1 50 5 0 0 0 0 1 0 2
241 1 1 2 51 4 1 50 5 0 0 0 0 1 0 2
242 1 1 1 39 4 6 50 3 0 0 1 0 0 0 2
242 3 3 1 11 4 6 50 3 0 0 1 0 0 0 2
242 2 2 2 38 4 6 50 3 0 0 1 0 0 0 2
245 1 1 1 48 4 1 50 4 0 0 0 1 0 0 2
245 3 3 1 17 4 1 50 4 0 0 0 1 0 0 2
245 2 2 2 42 4 1 50 4 0 0 0 1 0 0 2
246 1 1 1 58 5 4 50 5 0 0 0 0 1 0 2
246 2 2 2 50 5 4 50 5 0 0 0 0 1 0 2
246 3 3 2 26 5 4 50 5 0 0 0 0 1 0 2
247 2 2 1 43 4 1 46 3 0 0 1 0 0 0 2
247 1 1 2 41 4 1 46 3 0 0 1 0 0 0 2
247 3 3 2 11 4 1 46 3 0 0 1 0 0 0 2
248 1 1 1 40 4 1 70 1 1 0 0 0 0 0 3
248 2 2 2 32 4 1 70 1 1 0 0 0 0 0 3
249 1 1 1 43 4 1 64 4 0 0 0 1 0 0 2
249 3 3 1 16 4 1 64 4 0 0 0 1 0 0 2
249 2 2 2 41 4 1 64 4 0 0 0 1 0 0 2
249 4 3 2 15 4 1 64 4 0 0 0 1 0 0 2
250 2 2 1 32 4 1 54 1 1 0 0 0 0 0 2
250 1 1 2 30 4 1 54 1 1 0 0 0 0 0 2
251 1 1 1 65 1 1 132 6 0 0 0 0 0 1 4
251 2 2 2 62 1 1 132 6 0 0 0 0 0 1 4
254 1 1 1 37 2 4 85 2 0 1 0 0 0 0 3
254 2 2 2 37 2 4 85 2 0 1 0 0 0 0 3
256 1 1 1 50 2 1 85 4 0 0 0 1 0 0 3
256 2 2 2 47 2 1 85 4 0 0 0 1 0 0 3
256 3 3 2 16 2 1 85 4 0 0 0 1 0 0 3
256 4 3 2 14 2 1 85 4 0 0 0 1 0 0 3
257 1 1 1 46 2 4 85 4 0 0 0 1 0 0 3
257 4 3 1 16 2 4 85 4 0 0 0 1 0 0 3
257 2 2 2 44 2 4 85 4 0 0 0 1 0 0 3
257 3 3 2 19 2 4 85 4 0 0 0 1 0 0 3
259 1 1 1 55 2 1 85 5 0 0 0 0 1 0 3
259 2 2 2 53 2 1 85 5 0 0 0 0 1 0 3
259 3 3 2 31 2 1 85 5 0 0 0 0 1 0 3
261 1 1 1 65 2 1 145 6 0 0 0 0 0 1 5
261 2 2 2 62 2 1 145 6 0 0 0 0 0 1 5
262 1 1 1 44 3 1 56 4 0 0 0 1 0 0 2
262 3 3 1 19 3 1 56 4 0 0 0 1 0 0 2
262 2 2 2 42 3 1 56 4 0 0 0 1 0 0 2
262 4 3 2 15 3 1 56 4 0 0 0 1 0 0 2
263 1 1 1 49 3 1 54 5 0 0 0 0 1 0 2
263 4 3 1 22 3 1 54 5 0 0 0 0 1 0 2
263 2 2 2 47 3 1 54 5 0 0 0 0 1 0 2
263 3 3 2 19 3 1 54 5 0 0 0 0 1 0 2
266 1 1 1 54 3 1 56 5 0 0 0 0 1 0 2
266 3 3 1 29 3 1 56 5 0 0 0 0 1 0 2
266 2 2 2 49 3 1 56 5 0 0 0 0 1 0 2
267 1 1 2 63 3 1 42 6 0 0 0 0 0 1 2
268 1 1 1 45 3 1 43 3 0 0 1 0 0 0 2
268 3 3 1 11 3 1 43 3 0 0 1 0 0 0 2
268 2 2 2 36 3 1 43 3 0 0 1 0 0 0 2
268 5 3 2 12 3 1 43 3 0 0 1 0 0 0 2
269 1 1 1 45 3 1 47 3 0 0 1 0 0 0 2
269 2 2 2 42 3 1 47 3 0 0 1 0 0 0 2
269 3 3 2 11 3 1 47 3 0 0 1 0 0 0 2
270 1 1 1 34 2 4 59 2 0 1 0 0 0 0 2
270 2 2 2 34 2 4 59 2 0 1 0 0 0 0 2
271 2 2 1 60 2 1 59 5 0 0 0 0 1 0 2
271 3 3 1 34 2 1 59 5 0 0 0 0 1 0 2
271 1 1 2 57 2 1 59 5 0 0 0 0 1 0 2
272 1 1 1 35 2 1 59 2 0 1 0 0 0 0 2
272 2 2 2 35 2 1 59 2 0 1 0 0 0 0 2
273 1 1 1 35 2 1 59 2 0 1 0 0 0 0 2
273 2 2 2 39 2 1 59 2 0 1 0 0 0 0 2
275 1 1 1 33 2 1 59 2 0 1 0 0 0 0 2
275 2 2 2 29 2 1 59 2 0 1 0 0 0 0 2
276 1 1 1 30 2 4 59 1 1 0 0 0 0 0 2
277 1 1 1 47 2 1 59 4 0 0 0 1 0 0 2
277 2 2 2 48 2 1 59 4 0 0 0 1 0 0 2
277 3 3 2 17 2 1 59 4 0 0 0 1 0 0 2
277 4 3 2 15 2 1 59 4 0 0 0 1 0 0 2
278 1 1 1 78 2 1 84 6 0 0 0 0 0 1 3
278 2 2 2 79 2 1 84 6 0 0 0 0 0 1 3
280 1 1 1 56 2 1 84 5 0 0 0 0 1 0 3
280 2 2 2 53 2 1 84 5 0 0 0 0 1 0 3
280 3 3 2 27 2 1 84 5 0 0 0 0 1 0 3
281 1 1 1 50 2 1 84 4 0 0 0 1 0 0 3
281 4 3 1 17 2 1 84 4 0 0 0 1 0 0 3
281 2 2 2 45 2 1 84 4 0 0 0 1 0 0 3
281 3 3 2 22 2 1 84 4 0 0 0 1 0 0 3
283 1 1 1 51 2 1 84 5 0 0 0 0 1 0 3
283 4 3 1 25 2 1 84 5 0 0 0 0 1 0 3
283 2 2 2 49 2 1 84 5 0 0 0 0 1 0 3
283 3 3 2 27 2 1 84 5 0 0 0 0 1 0 3
285 1 1 1 48 2 1 122 3 0 0 1 0 0 0 4
285 5 3 1 17 2 1 122 3 0 0 1 0 0 0 4
285 2 2 2 41 2 1 122 3 0 0 1 0 0 0 4
285 3 3 2 15 2 1 122 3 0 0 1 0 0 0 4
286 1 1 1 57 2 1 122 5 0 0 0 0 1 0 4
286 4 3 1 25 2 1 122 5 0 0 0 0 1 0 4
286 2 2 2 51 2 1 122 5 0 0 0 0 1 0 4
286 3 3 2 29 2 1 122 5 0 0 0 0 1 0 4
287 1 1 1 43 2 1 122 2 0 1 0 0 0 0 4
287 2 2 2 40 2 1 122 2 0 1 0 0 0 0 4
287 3 3 2 12 2 1 122 2 0 1 0 0 0 0 4
290 1 1 1 46 2 1 102 3 0 0 1 0 0 0 4
290 4 3 1 10 2 1 102 3 0 0 1 0 0 0 4
290 2 2 2 42 2 1 102 3 0 0 1 0 0 0 4
290 3 3 2 15 2 1 102 3 0 0 1 0 0 0 4
291 1 1 1 30 2 4 102 2 0 1 0 0 0 0 4
291 2 2 2 26 2 4 102 2 0 1 0 0 0 0 4
292 1 1 2 61 1 1 59 6 0 0 0 0 0 1 2
295 1 1 1 47 1 4 43 3 0 0 1 0 0 0 2
295 3 3 1 11 1 4 43 3 0 0 1 0 0 0 2
295 2 2 2 43 1 4 43 3 0 0 1 0 0 0 2
297 1 1 1 43 1 4 43 2 0 1 0 0 0 0 2
297 2 2 2 46 1 4 43 2 0 1 0 0 0 0 2
298 1 1 1 40 1 4 56 2 0 1 0 0 0 0 2
298 2 2 2 37 1 4 56 2 0 1 0 0 0 0 2
299 2 3 1 24 1 4 50 5 0 0 0 0 1 0 2
299 1 1 2 60 1 4 50 5 0 0 0 0 1 0 2
300 1 1 1 46 4 4 83 4 0 0 0 1 0 0 3
300 2 2 2 43 4 4 83 4 0 0 0 1 0 0 3
300 3 3 2 13 4 4 83 4 0 0 0 1 0 0 3
My understanding is that R is implemented as copy-on-write.
Take for instance:
X <- 1:1000
y <- x # no copy made. x & y share the reference
y[1] <- 8 # now a copy is made.
If x is growing, the copies take longer and longer, and the script slows down.
I'm not that familiar with macro variables, but I suspect something like this is happening.
If you're working with a list, every time you add a new element to the list, every thing is recopied.
y <- list()
y$this <- 1:5
y$that <- 6:10 # now every thing was recopied.
Therefore it's better to allocate first. It really helps the performance.
y <- vector("list", 2)
y[[1]] <- 1:5
y[[2]] <- 6:10
These slides are really good: a link take a look!

Resources