what do the symbols 'Wl,-R' and '-Wl,./lib' mean in makefile? - c++11

Here is an example of makefile:
LINKFLAGS += -L./lib -lqn -Wl,-R -Wl,./lib
What exactly are the symbols '-Wl,-R' and '-Wl,./lib'?

The symbols in question have no particular meaning to make. They are just text as far as it is concerned, so their meaning depends on how they are used.
If the name "LINKFLAGS" is to be taken as indicative, however, then these will be included among the command-line arguments to link commands make runs (but this is still a question of parts of the makefile that are not in evidence). Such flags are not standardized, so the meaning is still somewhat in question.
If you happen to be using the GNU toolchain then the -Wl option to gcc and g++ assists in passing arguments through to the underlying linker, which would be consistent with the apparent intention. Appearing together as you show them, and supposing that ./lib is a directory, the effect on the GNU linker is equivalent to using its -rpath option and specifying ./lib. That would be a somewhat odd thing to do, but not altogether senseless.

Those are options for the linker (or the link step done by the compiler). You can find in the man page of gcc.
-Wl,option
Pass option as an option to the linker. If option contains commas, it is
split into multiple options at the commas. You can use this syntax to pass
an argument to the option. For example, -Wl,-Map,output.map passes
-Map output.map to the linker. When using the GNU linker, you can also get
the same effect with -Wl,-Map=output.map.
So, it is equivalent to pass the options -Rand .lib to the linker. The man page of ld stats than -R .lib is equivalent to -rpath=.lib
-rpath=dir
Add a directory to the runtime library search path. This is used when linking
an ELF executable with shared objects. All -rpath arguments are concatenated
and passed to the runtime linker, which uses them to locate shared objects at
runtime. The -rpath option is also used when locating shared objects which are
needed by shared objects explicitly included in the link; see the description
of the -rpath-link option. If -rpath is not used when linking an ELF executable,
the contents of the environment variable "LD_RUN_PATH" will be used if it is
defined.

gcc documentation indicates that -Wl is used to pass options to the linker.
gnu ld documentation and ld.so man page indicate that -R does. In summary, registering in the executable a path where shared libraries are searched when the executable is launched. The information about --enable-new-dtags and --disable-new-dtags may be also useful in understanding what happens.
The use of ./lib as argument of -R is odd, $ORIGIN is probably what is desired. Thus, with the various escape mechanisms needed,
LINKFLAGS += -L./lib -lqn -Wl,-R '-Wl,$$ORIGIN/lib'

Related

What are "nosys", "nano", "rdimon" terms when using ARM GCC?

I am learning to write ARM code using the GCC toolchain. I've run into a few GCC options that I cannot find documentation for. Could someone please help explain what they do?
-specs=nosys.specs
-specs=nano.specs
-specs=rdimon.specs
-lnosys
How do -specs=nosys.specs and -lnosys relate? Do you use them together, or are they exclusive of each other, or something else?
And nano, I've gathered to imply using the newlib-nano library. I've seen this used in conjunction with -lm and -lc. Does this just give you the standard libc and libm functions?
What does rdimon stand for? I understand it is for "semihosting", which means using the host IO somehow. Does this mean I can printf to the host console? I can find no documentation on how to actually use this.
If there is a source of truth for all of this somewhere that I haven't found, please let me know.
Thanks for any help on clarifying.
Gcc uses specs-strings, which control which subprocesses to run and what parameters it shall pass to them. The behavior defined by the spec-strings can be overridden using spec-files, whose purpose and syntax is documented here: https://gcc.gnu.org/onlinedocs/gcc/Spec-Files.html
Looking at these spec files in the lib folder of the gcc tool chain (e.g. /usr/lib/arm-none-eabi/lib) we can see that the mentioned spec files define which standard library is to be used by the linker.
For example, nosys.specs just defines that system calls should be implemented as stubs that return errors when called (-lnosys). The choice of libc in this case depends on whether nano should be used. With %G the libgcc spec-string is processed, which defines the parameters passed to the linker.
nosys.specs:
%rename link_gcc_c_sequence nosys_link_gcc_c_sequence
*nosys_libgloss:
-lnosys
*nosys_libc:
%{!specs=nano.specs:-lc} %{specs=nano.specs:-lc_nano}
*link_gcc_c_sequence:
%(nosys_link_gcc_c_sequence) --start-group %G %(nosys_libc) %(nosys_libgloss) --end-group
nano.specs defines the system include path and library parameters to use newlib-nano. The spec file contains replacements for -lc and others to nano equivalents, e.g. -lc_nano. So using it in conjunction with these will make gcc still pass nano libaries to the linker.
Using rdimon.specs, -lrdimon is passed as the libgloss part of the standard library. This basically means that you can use system calls (and also printf), but this relies on a debugger being attached, and the CPU may crash if no debugger is present.

What does gcc -lnsl this flag do?

Sorry for noobie question but I could not understand this .. what does gcc -lnsl flag do .
I tried searching over internet also read about rpc.
This flag tells gcc to link the binary with nsl library. To be more clear, the line gcc -lnsl could be rewritten to more verbose equivalent gcc -l nsl. See man gcc:
-llibrary
-l library
Search the library named library when linking. (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)
The -l option is passed directly to the linker by GCC. Refer to
your linker documentation for exact details. The general
description below applies to the GNU linker.
The linker searches a standard list of directories for the
library. The directories searched include several standard
system directories plus any that you specify with -L.

Two ways of linking to static libraries

Here are a couple of ways to use functions from a static library, built with ar (i.e. libSOMTEHING.a):
ld -o result myapp.o -Lpath/to/library -lname
ld -o result myapp.o path/to/library/libname.a
Since we omit any dynamic libraries from the command line, this should build a static executable.
What are the differences? For example, are the whole libraries linked in the executable, or just the needed functions? In the second example, does switching the places of the lib and the object file matter?
(PS: some non-GNU ld linkers require all options like -o to be before the first non-option filename, in which case they'd only accept -L... -lname before myapp.o)
In the first line, a search for a dynamic library (libname.so) occurs before the static library (libname.a) within a directory. Also, the standard lib path is also searched for libname.*, not just /path/to/library.
From "man ld"
On systems which support shared libraries, ld may also search for
files other than libnamespec.a. Specifically, on ELF and SunOS
systems, ld will search a directory for a library called
libnamespec.so before searching for one called libnamespec.a. (By
convention, a ".so" extension indicates a shared library.)
The second line forces the linker to use the static library at path/to/lib.
If there is no dynamic library built (libname.so), and the only library available is path/to/library/libname.a, then the two lines will produce the same "result" binary.

Makefile -L command

If I have this line in the make file:\
libpqxx_Libs = -L/share/home/cb -lpqxx-2.6.9 -lpq
Does this indicate the compiler to use the lpqxx-2.6.9.so shared object file or does this indciate the compiler to use all the .so in the foler lpqxx-2.6.9? Or is this something else altogether?
Thanks for the help!
-L in this context is an argument to the linker, that adds the specified directory to the list of directories that the linker will search for necessary libraries, e.g. libraries that you've specified using -l.
It isn't a makefile command, even though it's usually seen in makefiles for C projects.
The -L is actually not a makefile command (as you state it in the title of your question).
What actually happens in this line is an assignment of a value to the variable libpqxx_Libs -- nothing more and nothing less. You will have to search in your makefile where that variable is used via $(libpqxx_Libs) or ${libpqxx_Libs}. That is most likely as a argument in a link command, or a compile command that includes linking.
In that context, the meaning of -L and -l can be found in, for example, the gcc man pages, which state that
-llibrary
Use the library named library when linking.
The linker searches a standard list of directories for the li-
brary, which is actually a file named `liblibrary.a'. The linker
then uses this file as if it had been specified precisely by
name.
The directories searched include several standard system direc-
tories plus any that you specify with `-L'.

Different ways to specify libraries to gcc/g++

I'd be curious to understand if there's any substantial difference in specifying libraries (both shared and static) to gcc/g++ in the two following ways (CC can be g++ or gcc)
CC -o output_executable /path/to/my/libstatic.a /path/to/my/libshared.so source1.cpp source2.cpp ... sourceN.cpp
vs
CC -o output_executable -L/path/to/my/libs -lstatic -lshared source1.cpp source2.cpp ... sourceN.cpp
I can only see a major difference being that passing directly the fully-specified library name would make for a greater control in choosing static or dynamic versions, but I suspect there's something else going on that can have side effects on how the executable is built or will behave at runtime, am I right?
Andrea.
Ok, I can answer myself basing on some experiments and a deeper reading of gcc documentation:
From gcc documentation: http://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
[...] The linker handles an archive file by scanning through it for members which define symbols that have so far been referenced but not defined. But if the file that is found is an ordinary object file, it is linked in the usual fashion. The only difference between using an -l option and specifying a file name is that -l surrounds library with lib' and.a' and searches several directories
This actually answers also to the related doubt about the 3rd option of directly specifying object files on the gcc command line (i.e. in that case all the code in the object files will become part of the final executable, while using archives, only the object files that are really needed will be pulled in).

Resources