i try to realize what this expiration, and don't get it.
( lambda (a b) (lambda (x y) (if b (+ x y a) (-x y a)))
i think,
a is a number, and b is #t or #f,
on the if statement we ask if b is true, if yes return first expression(sum 3 numbers), else the second(Subtract 3 numbers)
what i need to write on Racket to run this?
i try
(define question( lambda (a b) (lambda (x y) (if b (+ x y a) (-x y a)))))
and than
(question 5 #f)
and nothing not going well in this language.
This is not a complete answer as I don't want to do your homework for you.
First of all formatting and indenting your code is going to help you in any programming language. You almost certainly have access to an editor which will do this. Below I've done this.
So, OK, what does a form like (λ (...) ...) denote? Well, its a function which takes some arguments (the first ellipsis) and returns the value of the last form in its body (the second ellipsis), or the only form in its body in a purely functional language.
So, what does:
(λ (a b)
(λ (x y)
...))
Denote? It's a function of two arguments, and it returns something: what is the thing it returns? Well, it's a form which looks like (λ (...) ...): you know what those forms mean already.
And finally we can fill out the last ellipsis (after correcting an error: (-x ...) is not the same as (- x ...)):
(λ (a b)
(λ (x y)
(if b
(+ x y a)
(- x y a))))
So now, how would you call this, and how would you make it do something interesting (like actually adding or subtracting some things)?
(lambda (a b) (lambda (x y) (if b (+ x y a) (- x y a))))
is a function that takes two arguments (that's what (lambda (a b) ...) says).
You can use the substitution method to discover what it produces.
Apply it to 5 and #f:
((lambda (a b) (lambda (x y) (if b (+ x y a) (- x y a)))) 5 #f)
[Replace a with 5 and b with #f in the body]:
(lambda (x y) (if #f (+ x y 5) (- x y 5)))
And this is a function that takes two numbers and produces a new number.
(Note that the #f and the 5 became fixed by the application of the outer lambda.)
It's easier to use the function if we name it (interactions from DrRacket):
> (define question (lambda (a b) (lambda (x y) (if b (+ x y a) (- x y a)))))
> (question 5 #f)
#<procedure>
which is as expected, based on the reasoning above.
Let's name this function as well:
> (define answer (question 5 #f))
and use it:
> (answer 3 4)
-6
or we could use it unnamed:
> ((question 5 #f) 3 4)
-6
or you could do it all inline, but that's a horrible unreadable mess:
> (((lambda (a b) (lambda (x y) (if b (+ x y a) (- x y a)))) 5 #f) 3 4)
-6
Related
I'm currently learning Racket/Scheme for a course (I'm not sure what's the difference, actually, and I'm not sure if the course covered that). I'm trying a basic example, implementing the Newton method to find a square root of a number; however, I ran into a problem with finding the distance between two numbers.
It seems that for whatever reason, when I'm trying to apply the subtraction operator between two numbers, it returns a list instead.
#lang racket
(define distance
(lambda (x y) (
(print (real? x))
(print (real? y))
(abs (- x y))
)
)
)
(define abs
(lambda x (
(print (list? x))
(if (< x 0) (- x) x)
)
)
)
(distance 2 5)
As you can see, I've added printing of the types of variables to make sure the problem is what I think it is, and the output of all those prints is #t. So:
In calling distance, x and y are both real.
In calling abs, x is a list.
So, the conclusion is that (- x y) returns a list, but why?
I double-checked with the documentation and it seems I'm using the subtraction operator correctly; I've typed (- 2 5) and then (real? (- 2 5)) into the same REPL I'm using to debug my program (Dr. Racket, to be specific), and I'm getting the expected results (-3 and #t, respectively).
Is there any wizard here that can tell me what kind of sorcery is this?
Thanks in advance!
How about this...
(define distance
(lambda (x y)
(print (real? x))
(print (real? y))
(abs (- x y))))
(define abs
(lambda (x) ;; instead of (lambda x ...), we are using (lambda (x) ...) form which is more strict in binding with formals
(print (list? x))
(if (< x 0) (- x) x)))
Read further about various lambda forms and their binding with formals.
I am learning Scheme by 'Structure and Interpretation of Computer Programs'
In Chapter 1.3.2 Constructing Procedures Using lambda.
I understood lambda like this.
The value to match the lambda is written outside the parenthesis of the lambda.
((lambda (x) (+ x 4) 4) ; (x) is matched to 4, result is 8
But in SICP, another example code is different.
The code is :
(define (sum x y) (+ x y))
(define (pi-sum a b)
(sum (lambda (x) (/ 1.0 (* x (+ x 3))))
a
(lambda (x) (+ x 4))
b
))
(pi-sum 3 6)
I think if (lambda (x) (/ 1.0 (* x (+ x 3)))) want match to a, lambda and a must bound by parenthesis.
But in example code, don't use parenthesis.
When I run this code, error is occurs.
error is this :
***'sum: expects only 2 arguments, but found 4'***
When I use more parenthesis like this :
(define (sum x y) (+ x y))
(define (pi-sum a b)
(sum ((lambda (x) (/ 1.0 (* x (+ x 3))))
a)
((lambda (x) (+ x 4))
b)
))
(pi-sum 2 6) ; result is 10.1
Code is run.
I'm confused because of SICP's example code.
Am I right on the principle of lambda?
If I am right, why SICP write like that?
It says to use the sum from 1.3.1. On page 77 (actually starting on 77 and ending on 78) it looks like this:
(define (sum term a next b)
(if (> a b)
0
(+ (term a)
(sum term (next a) next b))))
As you can see it looks a lot different from your sum that just adds two number together. You also had a typo in pi-sum:
(define (pi-sum a b)
(sum (lambda (x) (/ 1.0 (* x (+ x 2)))) ; multiplied by 2, not 3!
a
(lambda (x) (+ x 4))
b))
(* 8 (pi-sum 1 1000))
; ==> 3.139592655589783
So the point here is that you can pass lambdas instead of named procedures. Since (define (name . args) body ...) is just syntax sugar for (define name (lambda args body ...)) passing (lambda args body ...) instead of defining it and pass a name is just an equal refactoring.
Parentheses around a variable (+) or a lambda ((lambda args body ...)) calls whatever procedure the operator expression evaluates. It is not what you want since you pass procedures to be used by sum as an abstraction. sum can do multiplications or any number of things based on what you pass. in sum term is the procedure (lambda (x) (/ 1.0 (* x (+ x 2)))) and you see it calls it as apart of its code.
I'm having trouble figuring out how to sort out the 2 biggest numbers and return them into the sum of squares procedure. I am struggling to write the code out in Scheme's syntax. I'm trying to write it as cleanly as possible, and I keep running circles in my head and on paper trying to do so. the book describes thinking "procedurally" and I think I'm having trouble with that aspect.
The book provides code for the sum-of-squares and square procedures. I would include my pseudo code but I'm severely lost. Here is the code the book provides:
(define (square x) (* x x))
(define (sum-of-squares x y)
(+ (square x) (square y)))
How to define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers?
How to define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers?
First you need a name for the procedure. Let's called it sum-of-squares-two-largest.
(define (sum-of-squares-two-largest x y z)
...)
It can make use of the sum-of-squares function, but it needs to find the two largest numbers out of x,y,z first.
One way to do this would be to get rid of the smallest number. You could define a helper procedure smallest? a b c that checks that a is the smallest of the 3 numbers by doing (and (<= a b) (<= a c)).
(define (sum-of-squares-two-largest x y z)
(if (smallest? x y z)
(sum-of-squares y z)
(if (smallest? y x z)
...]
Write the code for min-of-three. Its negative (as in photography) is what you need:
(define (negative-min-of-three a b c)
(if (<= a b)
(if (<= a c)
(..... b ... c .....)
(..... a ... b .....))
(if (<=
..........
You can complete the code, and rename it. The clock is ticking!
I created two methods to get the largest and the one in the middle for the time being.
(define (largest x y z)
(cond ((and (> x y) (> x z)) x)
((and (> y x) (> y z)) y)
(else z))
)
(define (mid x y z)
(cond ((and (> x y) (< x z)) x)
((and (> y x) (< y z)) y)
(else z))
)
(define (square a)
(* a a)
)
(define (sum-of-two-largest x y z)
(+ (square (largest x y z)) (square (mid x y z)))
)
(sum-of-two-largest -12 -4 1)
The hard part of this is, if you're reading SICP book, finding the 2nd largest number of the three. You can observe, if we let c < b < a, that:
a = max(a, b) gives the largest of the two numbers
b = max(c, b) gives the largest of the two smaller numbers
But how do we get the variable b on the second line. It can so happen that a is the smaller of the two? We can observe that:
b = min(a, b)
If we substitute min(a, b) for b in the max function on the third line, we get:
b = max(c, min(a, b))
This strategy is implemented in the following code, using only the constructs introduced in the book so far:
(define (square x) (* x x))
(define (max a b) (if (> a b) a b))
(define (min a b) (if (< a b) a b))
(define (sum-of-squares-two-largest a b c)
(+ (square (max a b)) (square (max c (min a b)))))
(sum-of-squares-two-largest 1 2 3)
(sum-of-squares-two-largest 1 2 1)
I need to write a Scheme higher-order function that takes a function of two parameters as its parameter and returns a curried version of the function. I understand this much so far in terms of curried functions:
(define curriedFunction (lambda (x)
(if (positive? x)
(lambda (y z) (+ x y z))
(lambda (y z) (- x y z)))))
(display ((curriedFunction -5) 4 7))
(display "\n")
(display ((curriedFunction 5) 4 7))
If x is negative, it subtracts x y and z. If x is positive, it adds x, y, and z.
In terms of higher order functions I understand this:
(display (map (lambda (x y) (* x y)) '(1 2 3) '(3 4 5)))
And thirdly I understand this much in terms of passing functions in as arguments:
(define (function0 func x y)
(func x y))
(define myFunction (lambda (x y)
(* x y)))
(display (function0 myFunction 10 4))
In the code directly above, I understand that the function "myFunction" could have also been written as this:
(define (myFunction x y)
(* x y))
So now you know where I am at in terms of Scheme programming and syntax.
Now back to answering the question of writing a Scheme higher-order function that takes a function of two parameters as its parameter and returns a curried version of the function. How do I connect these concepts together? Thank you in advance, I truly appreciate it.
Here is a possible solution:
(define (curry f)
(lambda (x)
(lambda (y)
(f x y))))
The function curry takes the function f and returns a function with a single argument x. That function, given a value for its argument, returns another function that takes an argument y and returns the result of applying the original function f to x and y. So, for instance, (curry +) returns a curried version of +:
(((curry +) 3) 4) ; produces 7
How do I convert these procedures in Scheme to CPS form?
(lambda (x y)
((x x) y))
(lambda (x)
(lambda (f)
(f (lambda (y)
(((x x) f) y))))
((lambda (x) (x x)
(lambda (x) (x x))
*This is not any homework!
See Programming Languages, Application and Interpretation, starting around Chapter 15. Chapter 18 talks about how to do it automatically, but if you're not familiar with thinking about expressing a function that does "what to do next", you'll probably want to try the finger exercises first.
Don't have someone do it for you: you'll really want to understand the process and be able to do it by hand, independent of Scheme or otherwise. It comes up especially in Asynchronous JavaScript web programming, where you really have no choice but to do the transform.
In the CPS transform, all non-primitive functions need to now consume a function that represents "what-to-do-next". That includes all lambdas. Symmetrically, any application of a non-primitive function needs to provide a "what-to-do-next" function, and stuff the rest of the computation in that function.
So if we had a program to compute a triangle's hypothenuse:
(define (hypo a b)
(define (square x) (* x x))
(define (add x y) (+ x y))
(sqrt (add (square a)
(square b))))
and if we state that the only primitive applications here are *, +, and sqrt, then all the other function definitions and function calls need to be translated, like this:
(define (hypo/k a b k)
(define (square/k x k)
(k (* x x)))
(define (add/k x y k)
(k (+ x y)))
(square/k a
(lambda (a^2)
(square/k b
(lambda (b^2)
(add/k a^2 b^2
(lambda (a^2+b^2)
(k (sqrt a^2+b^2)))))))))
;; a small test of the function.
(hypo/k 2 3 (lambda (result) (display result) (newline)))
The last expression shows that you end up having to compute "inside-out", and that the transformation is pervasive: all lambdas in the original source program end up needing to take an additional argument, and all non-primitive applications need to stuff "what-to-do-next" as that argument.
Take a close look at section 17.2 of the cited book: it covers this, as well as 17.5, which talks about why you need to touch ALL the lambdas in the source program, so that the higher-order case works too.
As another example of the transform, applied for a higher-order case, let's say that we have:
(define (twice f)
(lambda (x)
(f (f x))))
Then the translation of something like this is:
(define (twice/k f k1)
(k1 (lambda ...)))
... because that lambda's just a value that can be passed to k1. But of course, the translation needs to run through the lambda as well.
We must first do the inner call to f with x (and remember that all non-primitive function applications need to pass an appropriate "what-to-do-next!"):
(define (twice/k f k1)
(k1 (lambda (x k2)
(f x (lambda (fx-val)
...)))))
... take that value and apply it again to f...
(define (twice/k f k1)
(k1 (lambda (x k2)
(f x (lambda (fx-val)
(f fx-val ...))))))
... and finally return that value to k2:
(define (twice/k f k1)
(k1 (lambda (x k2)
(f x (lambda (fx-val)
(f fx-val k2))))))
;; test. Essentially, ((twice square) 7)
(define (square/k x k) (k (* x x)))
(twice/k square/k
(lambda (squaresquare)
(squaresquare 7
(lambda (seven^4)
(display seven^4)
(newline)))))
You need to choose to what level you need/want to CPS-transform.
If you just want (lambda (x y) ((x x) y)) in continuation-passing(CP) style, then (lambda (k x y) (k ((x x) y))) will do fine.
If you want its arguments to be treated as being in CP style too, then you need a little more.
Suppose first that only the second argument (y) is in CP form and is thus really something like (lambda (k) (k y0)) and so needs to be called with some continuation to extract its value, then you would need:
(lambda (k x y)
(y (lambda (y0) (k ((x x) y0)) )) )
Finally assume that both x and y are in CP style. Then you would need something like:
(lambda (k x y)
(x (lambda (x0)
(x (lambda (x1)
(y (lambda (y0)
(k ((x0 x1) y0)) ))))
Here you have the freedom to reorder the calls to x and y. Or maybe you only need one call to x, because you know its value does not depend on the continuation it is called with. For example:
(lambda (k x y)
(y (lambda (y0)
(x (lambda (x0)
(k ((x0 x0) y0)) ))))
The other expressions you asked about can be transformed similarly.