I would like to draw a transit map which is not based on any real map.
Unlike conventional maps, transit maps are usually not geographically accurate—instead they use straight lines and fixed angles, and often illustrate a fixed distance between stations, compressing those in the outer area of the system and expanding those close to the center.
This map would be massive, not infinite but if a line ran horizontally across it could ideally have 40,075 stations. I want it to look just like any local transit map (I'm basing myself on the Montreal metro map) but much bigger obviously, which means I don't care about what a metro system of this scale should look like or how useless a map this size would be.
I think the hardest part will be to generate where the stations will be, then drawing stylized lines between those stations should be relatively easy using something like Processing.
So, do you have any idea how to generate a giant transit map???
So far, the research
Nathan Hellinga's Processing.py subway map generator resembles what I'm looking for and looks great but the algorithm wouldn't scale well to a very large grid.
Jannis Redmann's generating transit map theory is really interesting but bases itself on real world data. Maybe it could be used with generated data but how do you generate that data then?
My idea, a random walker
Basically, roll some dice and based on a predefined set of rules: go forward, place a station, turn... and repeat countless times until the map is filled. I'm not yet sure what the probabilities would be, it would take some trial and error.
Results of another question I asked on Worldbuilding
Fractal generators loos really promising! But how do I make it look like a transit map? I think it relates to the slime (see below) so I'll look more into it.
Graphviz, an open-source tool that converts DOT script files into graphical images. I think that has the same problem as Jannis Redmann's, I still need an algorithm to generate data.
Slime is a really interesting idea! I would have to do some more research on how to reproduce these patterns but it's an interesting place to start.
Related
In image processing, each of the following methods can be used to get the orientation of a blob region:
Using second order central moments
Using PCA to find the axis
Using distance transform to get the skeleton and axis
Other techniques, like fitting the contour of the region with an ellipse.
When should I consider using a specific method? How do they compare, in terms of accuracy and performance?
I'll give you a vague general answer, and I'm sure others will give you more details. This issue comes up all the time in image processing. There are N ways to solve my problem, which one should I use? The answer is, start with the simplest one that you understand the best. For most people, that's probably 1 or 2 in your example. In most cases, they will be nearly identical and sufficient. If for some reason the techniques don't work on your data, you have now learned for yourself, a case where the techniques fail. Now, you need to start exploring other techniques. This is where the hard work comes in, in being a image processing practitioner. There are no silver bullets, there's a grab bag of techniques that work in specific contexts, which you have to learn and figure out. When you learn this for yourself, you will become god like among your peers.
For this specific example, if your data is roughly ellipsoidal, all these techniques will be similar results. As your data moves away from ellipsoidal, (say spider like) the PCA/Second order moments / contours will start to give poor results. The skeleton approaches become more robust, but mapping a complex skeleton to a single axis / orientation can become a very difficult problem, and may require more apriori knowledge about the blob.
I want to get my hands dirty with some machine learning, and I finally have a problem which seems like a good beginner project. However, despite reading a lot about the subject I am unsure how to get started, and what my basic approach should be.
I have a dataset which should look like this.
a real dataset looks more like this:
I want to identify the points in the red circles (on the first image), and be robust against occasional artifacts like the one in the blue circle.
I sounds like a really easy task. However, the is quite a lot of noise in the raw data. My current implementation is pretty traditional. It blurs the data and compares the first and second derivative to some estimated threshold values. This approach works, but can "only" identify the points with ~99.7% accuracy, but since I do around 100.000 measurements a day I would love to increase this number.
So, this is what I have:
All the datasets I want/need
A pretty good model of how the data should look.
A pretty good training set, using my existing algorithm (the outlines can be fixed manually)
However, I do not have a basic idea how what approach I should use. I feels like none of the material I've read on machine learning fit's this problem.
Can someone help me with the super high level approach to solve this problem?
As per the title. I want to, given a Google maps URL, generate a twistiness rating based on how windy the roads are. Are there any techniques available I can look into?
What do I mean by twistiness? Well I'm not sure exactly. I suppose it's characterized by a high turn -to-distance ratio, as well as high angle-change-per-turn number. I'd also say that elevation change of a road comes in to it as well.
I think that once you know exactly what you want to measure, the implementation is quite straightforward.
I can think of several measurements:
the ratio of the road length to the distance between start and end (this would make a long single curve "twisty", so it is most likely not the complete answer)
the number of inflection points per unit length (this would make an almost straight road with a lot of little swaying "twisty", so it is most likely not the complete answer)
These two could be combined by multiplication, so that you would have:
road-length * inflection-points
--------------------------------------
start-end-distance * road-length
You can see that this can be shortened to "inflection-points per start-end-distance", which does seem like a good indicator for "twistiness" to me.
As for taking elevation into account, I think that making the whole calculation in three dimensions is enough for a first attempt.
You might want to handle left-right inflections separately from up-down inflections, though, in order to make it possible to scale the elevation inflections by some factor.
Try http://www.hardingconsultants.co.nz/transportationconference2007/images/Presentations/Technical%20Conference/L1%20Megan%20Fowler%20Canterbury%20University.pdf as a starting point.
I'd assume that you'd have to somehow capture the road centreline from Google Maps as a vectorised dataset & analyse using GIS software to do what you describe. Maybe do a screen grab then a raster-to-vector conversion to start with.
Cumulative turn angle per Km is a commonly-used measure in road assessment. Vertex density is also useful. Note that these measures depend upon an assumption that vertices have been placed at some form of equal density along the line length whilst they were captured, rather than being manually placed. Running a GIS tool such as a "bendsimplify" algorithm on the line should solve this. I have written scripts in Python for ArcGIS 10 to define these measures if anyone wants them.
Sinuosity is sometimes used for measuring bends in rivers - see the help pages for Hawths Tools for ArcGIS for a good description. It could be misleading for roads that have major
changes in course along their length though.
This is a long shot, but I thought I might try before starting the dirty work.
I've got a project to build an application which will, for a defined input stations (vertices) and lines (edges), that is, a real map of some public transportation, schematize a given map into a metro map. I've done some research on the problem and it's an NP-complete problem equivalent to the 3-SAT problem. I also have some theoretic ideas on how to generate such a map, but they aren't detailed enough.
What I'm looking for is any other existing solution of this problem, some sort of pseudo-code, some real code in (almost) any other programming language etc, anything that would reduce the time I need to spend working on the algorithm itself, which will in return give me more time to work on other aspects of the application.
If anyone has ever seen anything that can help me, I'd appreciate it very much.
If you google for "metro map layout problem" and "metro map line crossing" you'll find a lot of references, since it has been researched very actively in the past 10 years.
The problem seems no trivial at all, and translating the "artistic" features to mathematical constraints is seemingly one of the most difficult tasks.
Anyway here are three publications that I found interesting to start with (among many, many others):
Metro Map Layout Using Multicriteria Optimization
Line Crossing Minimization on Metro Maps
The Metro Map Layout Problem
HTH!
Research that's similar to your topic: http://graphics.stanford.edu/papers/routemaps/
This is just some suggestion with handwaving - take with a pinch of salt.
My notion of a "metro" map is one where lines tend to one of the eight cardinal directions and stations are regularly spaced.
I'm assuming you're trying to convert a set of real coordinates into "metro" coordinates.
I would start with your main route (e.g., a city loop), then incrementally add other routes in order of importance.
For each route you want to find the nearest approximation that uses the fewest number of straight lines travelling in the eight cardinal directions. You might do this by starting with the bounding box for the real coordinates, splitting that into a grid, then finding a "metro" route from grid square to grid square, then successively refining that route to reduce the number of bends without distorting the map too much and without introducing crossings with other routes if at all possible.
Having done that, scale each line so that consecutive stations are the same distance apart on the "metro" view.
My guess is you'll still want to support manual tweaking of the result.
Good luck!
Feels like a planning problem.
Looks like your hard constraints are:
Every station must be on a point. A points are on a grid with a distance of X between points (I'd make this static on 2cm)
There should not be 2 stations on the same spot
There should be enough room to draw the station label. Note that the label can be assigned different directions from the point to which the station is assigned.
There should be enough room to draw the subway lines.
Looks like your soft constraints are:
For each station, minimize the actually geographical location distance to the point assigned to the station.
Then throw something like Drools Planner on it, here's an example of hard and soft constraints for nurse rostering.
I am doing a maprouting application. Several people have suggested me, that I do a datastructure where I split the map in a grid. In theory it sounds really good, but I am not to sure because of the bad performance I get when I implement it.
In the worst case you have to draw every road. If you divide the map in a grid, the sum of roads in all the cells in the grid, will be much larger than if you put all roads in a list.(each cell must have more roads than actually needed if a road goes through it).
If I have to zoom in I can see some smartness in using a grid, but if I keep it in a list I can just decrease the numbers of roads each time I zoom in.
As it is now(by using the list) it is not really fast, so I am all for making it faster. But in practice dividing in a grid makes it slower for me.
Any suggestigion for what datastructure I should be using and/or what I might be doing wrong?
See this question for related information:
What algorithms compute directions from point A to point B on a map?
Somebody who writes this kind of software for a living has answered it.
Also for rendering see:
What is the best way to read, represent and render map data?
I'm not quite sure if you're trying to do routing quick or rendering!
If you want it to go quick, you might be better off organizing your roads in to major and minor roads.
Use the list of minor roads to find a route to the nearest major road.
Use the major roads to get you near the destination.
Then go back to the minor roads to complete the route.
Without a split like this, there are a heck of a lot of roads to search, most of which are quite slow routes.
google does not draw each road every time the screen is refreshed. They used pre-drawn tiles of the map. They can redraw them as needed. e.g. when there is a map update. They even use transparent overlays, stacks of tiles to add and remove layers of details.
Very clever, but very simple.
You may want to look at openlayers javascript library. Free and can do just about anything you need to do with a map.
Maptraction JS is also available - its not as complete as OpenLayers
More optimal then using a grid as your spatial data structure, might be a quadtree because it logarithmically breaks down the map. And from studying the source, my guesstimate is that google uses (that or) a similar data structure.
As for getting directions, you might want to look in to hierarchical path finding to approximate the direction at first and to speed up the process; generic path finding algorithms tend to be quite slow at that level of complexity.