Nested While Loop Big O . estimate - performance

int i = 0;
int n = 20;
while (i < n)
{
i++;
int j = i;
while (i < n)
{
printf("this is %d", i);
i++;
}
i = j;
}
So to estimate the time complexity of this function, my approach to estimating is that the outer loop runs n times. The inner loop runs n - 1 times? so would the time complexity for this nested loop be O(n^2)?

You can rewrite the initial code
int n = 20;
int i = 0;
while (i < n)
{
i++;
int j = i;
while (i < n)
{
printf("this is %d",i);
i++;
}
i = j;
}
into its equivalent:
int n = 20;
for (int i = 1; i < n; ++i)
for (int j = i; j < n; ++j)
printf("this is %d", j);
Now it's evident that you have O(n**2) time complexity: you have
(n - 1) + (n - 2) + (n - 3) + ... + 3 + 2 + 1 = n * (n - 1) / 2
operations (printf(...)) and
O(n * (n - 1) / 2) = O(n**2 / 2 - n / 2) = O(n**2)

In subsequent iterations, inner loop runs as many times as n-1, n-2, n-3,..., 1. So the sum is n(n-1)/2, which leads to the asymptotic time complexity as O(n^2).

Related

How to find the time complexity of these two programs? [duplicate]

int sum = 0;
for(int i = 1; i < n; i++) {
for(int j = 1; j < i * i; j++) {
if(j % i == 0) {
for(int k = 0; k < j; k++) {
sum++;
}
}
}
}
I don't understand how when j = i, 2i, 3i... the last for loop runs n times. I guess I just don't understand how we came to that conclusion based on the if statement.
Edit: I know how to compute the complexity for all the loops except for why the last loop executes i times based on the mod operator... I just don't see how it's i. Basically, why can't j % i go up to i * i rather than i?
Let's label the loops A, B and C:
int sum = 0;
// loop A
for(int i = 1; i < n; i++) {
// loop B
for(int j = 1; j < i * i; j++) {
if(j % i == 0) {
// loop C
for(int k = 0; k < j; k++) {
sum++;
}
}
}
}
Loop A iterates O(n) times.
Loop B iterates O(i2) times per iteration of A. For each of these iterations:
j % i == 0 is evaluated, which takes O(1) time.
On 1/i of these iterations, loop C iterates j times, doing O(1) work per iteration. Since j is O(i2) on average, and this is only done for 1/i iterations of loop B, the average cost is O(i2 / i) = O(i).
Multiplying all of this together, we get O(n × i2 × (1 + i)) = O(n × i3). Since i is on average O(n), this is O(n4).
The tricky part of this is saying that the if condition is only true 1/i of the time:
Basically, why can't j % i go up to i * i rather than i?
In fact, j does go up to j < i * i, not just up to j < i. But the condition j % i == 0 is true if and only if j is a multiple of i.
The multiples of i within the range are i, 2*i, 3*i, ..., (i-1) * i. There are i - 1 of these, so loop C is reached i - 1 times despite loop B iterating i * i - 1 times.
The first loop consumes n iterations.
The second loop consumes n*n iterations. Imagine the case when i=n, then j=n*n.
The third loop consumes n iterations because it's executed only i times, where i is bounded to n in the worst case.
Thus, the code complexity is O(n×n×n×n).
I hope this helps you understand.
All the other answers are correct, I just want to amend the following.
I wanted to see, if the reduction of executions of the inner k-loop was sufficient to reduce the actual complexity below O(n⁴). So I wrote the following:
for (int n = 1; n < 363; ++n) {
int sum = 0;
for(int i = 1; i < n; ++i) {
for(int j = 1; j < i * i; ++j) {
if(j % i == 0) {
for(int k = 0; k < j; ++k) {
sum++;
}
}
}
}
long cubic = (long) Math.pow(n, 3);
long hypCubic = (long) Math.pow(n, 4);
double relative = (double) (sum / (double) hypCubic);
System.out.println("n = " + n + ": iterations = " + sum +
", n³ = " + cubic + ", n⁴ = " + hypCubic + ", rel = " + relative);
}
After executing this, it becomes obvious, that the complexity is in fact n⁴. The last lines of output look like this:
n = 356: iterations = 1989000035, n³ = 45118016, n⁴ = 16062013696, rel = 0.12383254507467704
n = 357: iterations = 2011495675, n³ = 45499293, n⁴ = 16243247601, rel = 0.12383580700180696
n = 358: iterations = 2034181597, n³ = 45882712, n⁴ = 16426010896, rel = 0.12383905075183874
n = 359: iterations = 2057058871, n³ = 46268279, n⁴ = 16610312161, rel = 0.12384227647628734
n = 360: iterations = 2080128570, n³ = 46656000, n⁴ = 16796160000, rel = 0.12384548432498857
n = 361: iterations = 2103391770, n³ = 47045881, n⁴ = 16983563041, rel = 0.12384867444612208
n = 362: iterations = 2126849550, n³ = 47437928, n⁴ = 17172529936, rel = 0.1238518469862343
What this shows is, that the actual relative difference between actual n⁴ and the complexity of this code segment is a factor asymptotic towards a value around 0.124... (actually 0.125). While it does not give us the exact value, we can deduce, the following:
Time complexity is n⁴/8 ~ f(n) where f is your function/method.
The wikipedia-page on Big O notation states in the tables of 'Family of Bachmann–Landau notations' that the ~ defines the limit of the two operand sides is equal. Or:
f is equal to g asymptotically
(I chose 363 as excluded upper bound, because n = 362 is the last value for which we get a sensible result. After that, we exceed the long-space and the relative value becomes negative.)
User kaya3 figured out the following:
The asymptotic constant is exactly 1/8 = 0.125, by the way; here's the exact formula via Wolfram Alpha.
Remove if and modulo without changing the complexity
Here's the original method:
public static long f(int n) {
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j = 1; j < i * i; j++) {
if (j % i == 0) {
for (int k = 0; k < j; k++) {
sum++;
}
}
}
}
return sum;
}
If you're confused by the if and modulo, you can just refactor them away, with j jumping directly from i to 2*i to 3*i ... :
public static long f2(int n) {
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j = i; j < i * i; j = j + i) {
for (int k = 0; k < j; k++) {
sum++;
}
}
}
return sum;
}
To make it even easier to calculate the complexity, you can introduce an intermediary j2 variable, so that every loop variable is incremented by 1 at each iteration:
public static long f3(int n) {
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j2 = 1; j2 < i; j2++) {
int j = j2 * i;
for (int k = 0; k < j; k++) {
sum++;
}
}
}
return sum;
}
You can use debugging or old-school System.out.println in order to check that i, j, k triplet is always the same in each method.
Closed form expression
As mentioned by others, you can use the fact that the sum of the first n integers is equal to n * (n+1) / 2 (see triangular numbers). If you use this simplification for every loop, you get :
public static long f4(int n) {
return (n - 1) * n * (n - 2) * (3 * n - 1) / 24;
}
It is obviously not the same complexity as the original code but it does return the same values.
If you google the first terms, you can notice that 0 0 0 2 11 35 85 175 322 546 870 1320 1925 2717 3731 appear in "Stirling numbers of the first kind: s(n+2, n).", with two 0s added at the beginning. It means that sum is the Stirling number of the first kind s(n, n-2).
Let's have a look at the first two loops.
The first one is simple, it's looping from 1 to n. The second one is more interesting. It goes from 1 to i squared. Let's see some examples:
e.g. n = 4
i = 1
j loops from 1 to 1^2
i = 2
j loops from 1 to 2^2
i = 3
j loops from 1 to 3^2
In total, the i and j loops combined have 1^2 + 2^2 + 3^2.
There is a formula for the sum of first n squares, n * (n+1) * (2n + 1) / 6, which is roughly O(n^3).
You have one last k loop which loops from 0 to j if and only if j % i == 0. Since j goes from 1 to i^2, j % i == 0 is true for i times. Since the i loop iterates over n, you have one extra O(n).
So you have O(n^3) from i and j loops and another O(n) from k loop for a grand total of O(n^4)

What's the big O for this triple nested loop?

Outer loop is O(n), 2nd loop is O(n^2) and 3rd loop is also O(n^2), but the 3rd loop is conditional.
Does that mean the 3rd loop only happens 1/n (1 every n) times and therefore total big O is O(n^4)?
for (int i = 1; i < n; i++) {
for (int j = 1; j < (n*n); j++) {
if (j % i == 0) {
for (int k = 1; k < (n*n); k++) {
// Simple computation
}
}
}
}
For any given value of i between 1 and n, the complexity of this part:
for (int j = 1; j < (n*n); j++) {
if (j % i == 0) {
for (int k = 1; k < (n*n); k++) {
// Simple computation
}
}
}
is O(n4/i), because the if-condition is true one ith of the time. (Note: if i could be larger than n, then we'd need to write O(n4/i + n2) to include the cost of the loop iterations where the if-condition was false; but since i is known to be small enough that n4/i ≥ n2, we don't need to worry about that.)
So the total complexity of your code, adding together the different loop iterations across all values of i, is O(n4/1 + n4/2 + n4/3 + ⋯ + n4/n) = O(n4 · (1/1 + 1/2 + 1/3 + ⋯ + 1/n)) = O(n4 log n).
(That last bit relies on the fact that, since ln(n) is the integral of 1/x from 1 to n, and 1/x is decreasing over that interval, we have ln(n) < ln(n+1) < (1/1 + 1/2 + 1/3 + ⋯ + 1/n) < 1 + ln(n).)

Calculating time complexity with big O

I have an assignment I am not sure with; I have to calculate the time complexity of the following code:
int a[][] = new int[m][n]; //O(1)
int w = 0; //O(1)
for (int i = 0; i < m; i++) //O(n)
for (int j = 0; j <n; j++) //O(n)
if (a[i] [j] % 2 == 0) //O(logn)
w++; //O(1)
So from my O estimations I add them up:
O(1) + O(1) + O(n) * ( O(n) * ( O(logn) + O(1) / 2 ) )
O(1) + O(1) + O(n) * ( O(nlogn) + O(n) / 2 )
O(1) + O(1) + (O(n2logn) + O(n2) / 2)
=O(n2logn)
I'm not sure if my train of thought is correct, could somebody help?
for (int i = 0; i < m; i++) //O(m)
for (int j = 0; j <n; j++) //O(n)
if (a[i] [j] % 2 == 0) //O(1)
w++; //O(1)
So the total complexity in terms of big-o is:
O(m)*(O(n) + O(1) + O(1)) = O(m)*O(n) = O(m*n).
for (int i = 0; i < m; i++) //O(m)
{
for (int j = 0; j <n; j++) //O(n)
{
// your code
}
}
So the i loop will go on m times, and for the j loop would run n times.
So in total the code will go on m*n times which would be its time complexity: O(m.n)
The final complexity is O(n^2)
Your logic is close except...
int a[][] = new int[m][n]; //O(1)
int w = 0; //O(1)
for (int i = 0; i < m; i++) //O(n)
for (int j = 0; j <n; j++) //O(n)
if (a[i] [j] % 2 == 0) //O(1)
w++; //O(1)
Your if statement embedded in your second for loop is simply referencing an element in an array and doing a basic comparison. This is of time complexity O(1). Also, typically you would not consider initializing variables in a time complexity problem.

T(n) time complexity for nested for loops

void foo (int n, int val)
{
int b,c; //+1
for (int j = 4; j < n; j++) //n
{
for (int i = 0; i < j; i++) //n
{
b = b * val; // +1
for (int k = 0; k < n; ++k) // n
c = b + c;
}
}
}
I have the code above and I'm getting various answers for T(n) when I try to solve it. From my various answers(n3-7n2+2) / 2 and ((n3 -5n2 +6n) / 2)+ 2n - 6, I concluded that O(n) is O(n3). I just need to find the correct T(n).
It's 4am so maybe i'm talking nonsense, but what i think is:
the first for is n-3 iteration
the second for is 4+5+6+7+...+n-1 iteration => 1/2(n² - n - 12)
the third for is n iteration
(n-3)*(1/2(n² - n - 12))*n => O(n^4)

Big-O analysis for a loop

I've got to analyze this loop, among others, and determine its running time using Big-O notation.
for ( int i = 0; i < n; i += 4 )
for ( int j = 0; j < n; j++ )
for ( int k = 1; k < j*j; k *= 2 )`
Here's what I have so far:
for ( int i = 0; i < n; i += 4 ) = n
for ( int j = 0; j < n; j++ ) = n
for ( int k = 1; k < j*j; k *= 2 ) = log^2 n
Now the problem I'm coming to is the final running time of the loop. My best guess is O(n^2), however I am uncertain if this correct. Can anyone help?
Edit: sorry about the Oh -> O thing. My textbook uses "Big-Oh"
First note that the outer loop is independent from the remaining two - it simply adds a (n/4)* multiplier. We will consider that later.
Now let's consider the complexity of
for ( int j = 0; j < n; j++ )
for ( int k = 1; k < j*j; k *= 2 )
We have the following sum:
0 + log2(1) + log2(2 * 2) + ... + log2(n*n)
It is good to note that log2(n^2) = 2 * log2(n). Thus we re-factor the sum to:
2 * (0 + log2(1) + log2(2) + ... + log2(n))
It is not very easy to analyze this sum but take a look at this post. Using Sterling's approximation one can that it is belongs to O(n*log(n)). Thus the overall complexity is O((n/4)*2*n*log(n))= O(n^2*log(n))
In terms of j, the inner loop is O(log_2(j^2)) time, but sine
log_2(j^2)=2log(j), it is actually O(log(j)).
For each iteration of middle loop, it takes O(log(j)) time (to do the
inner loop), so we need to sum:
sum { log(j) | j=1,..., n-1 } log(1) + log(2) + ... + log(n-1) = log((n-1)!)
And since log((n-1)!) is in O((n-1)log(n-1)) = O(nlogn), we can conclude middle middle loop takes O(nlogn) operations .
Note that both middle and inner loop are independent of i, so to
get the total complexity, we can just multiply n/4 (number of
repeats of outer loop) with complexity of middle loop, and get:
O(n/4 * nlogn) = O(n^2logn)
So, total complexity of this code is O(n^2 * log(n))
Time Complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount (which is c in examples below):
for (int i = 1; i <= n; i += c) {
// some O(1) expressions
}
for (int i = n; i > 0; i -= c) {
// some O(1) expressions
}
Time complexity of nested loops is equal to the number of times the innermost statement is executed. For example the following sample loops have O(n²) time complexity:
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=n; j += c) {
// some O(1) expressions
}
}
for (int i = n; i > 0; i += c) {
for (int j = i+1; j <=n; j += c) {
// some O(1) expressions
}
Time Complexity of a loop is considered as O(logn) if the loop variables is divided / multiplied by a constant amount:
for (int i = 1; i <=n; i *= c) {
// some O(1) expressions
}
for (int i = n; i > 0; i /= c) {
// some O(1) expressions
}
Now we have:
for ( int i = 0; i < n; i += 4 ) <----- runs n times
for ( int j = 0; j < n; j++ ) <----- for every i again runs n times
for ( int k = 1; k < j*j; k *= 2 )` <--- now for every j it runs logarithmic times.
So complexity is O(n²logm) where m is n² which can be simplified to O(n²logn) because n²logm = n²logn² = n² * 2logn ~ n²logn.

Resources