esp32 EEPROM read/write cycle - esp32

I am using ESP32 module for BLE & WiFi functionality, I am writing data on EEPROM of ESP32 module after every 2 seconds.
How many read/write cycles are allowed as per standard features of ESP32 module? based on which I need to calculate EEPROM life time and number of readings (with frequency) I can store.

The ESP32 doesn’t have an actual EEPROM; instead it uses some of its flash storage to mimic an EEPROM. The specs will depend on the specific SPI flash chip, but they’re likely to be closer to 10,000 cycles than 100,000. Writing to it every couple of seconds will likely wear it out pretty quickly - it’s not a good design choice, especially if you keep rewriting the same location.

I'm very late here, but an SD card seems like the ideal option for you. If you want to save just a few bytes, you can use FeRAM (also called FRAM). It's a combination between RAM and ROM, it's vast, and the data stays on it after power off. It is pretty expensive, so you might want to go with the SD card or web server option. I just wanted to tell you that this existed, I also know this for like a few months.

At that write rate even automotive grade EEPROM like the 24LC001 which supports at least 1,000,000 writes will only last about 2 months!
I think microchip has EERAM which supports infinite writes and will not loose contents on power loss.
Check the microchips 47L series.

Related

in ESP32 / ESP-IDF - when to use EEPROM vs NVS vs SPIFFS?

I'm fairly new to doing production work on ESP32 microcontrollers, and I'm wanting a little context and nuance from people who've been around the block a few times. So this question is a bit more on that kind of thing rather than a "how do I code X" kind of question.
I have lots of data storage needs on my current project.
larger blobs of data that need to be stored less often
smaller blobs of data that need to be updated more often
factory settings (like serial number, board revision, etc) that are particular to a given device, but aren't going to be encoded in C.
etc
I'm familiar with storing data in "blobs", and I'm familiar with encoding / decoding data with protocol buffers.
So given all that, I'm trying to gain context on the differences between my various storage options on the ESP32, and when to use each.
EEprom
NVS
SPIFFS / LittleFS
other options...
What use cases make you pick one of these options over another?
There's no EEPROM on the ESP32, just the flash.
NVS is a simple non-volatile key-value store with different data types (integers 8-64 bits, strings, blobs). It's reasonably convenient to use, does wear levelling and supports flash encryption (although that a bit of a hassle). I'd use it for storing factory settings and anything else which is reasonably small (there's a 4000 byte limit on strings, 508,000 byte limit on blobs). If the device needs to write often, you might want to create a separate, dedicated, read-only NVS partition for storing device attributes (serial, hw info) so it's guaranteed to not get clobbered by power failures during write.
ESP IDF supports SPIFFS and FAT file systems.
SPIFFS is light-weight and much better in terms of wear levelling and reliability. I'd use this for storing any larger files. It doesn't support flash encryption, unfortunately.
FAT file system is probably the worst choice because it's not really natively Flash-friendly, nor reliable. Espressif has built some kind of a layer between FAT and flash to accommodate wear levelling. The only critical advantage of FAT is that it supports flash encryption.
Then there are third party options which I haven't used, unfortunately.
As always, consider the number of page erases your writes are going to cause in the flash - this gives you an estimate of how many times you can write before the chip's lifetime is reached.

External memory Data Copy through SPI -- Speed

Any experience still seems to be insufficient to answer those strange issues that pop up in serial communication buses. We are trying to implement a data copy from an external flash in to the SRAM. Below are the details how we have configured our system.
Controller : RH850 (D1M1), PLL speed at 60MHz
External Flash (IS25LP128)
SPI speed: 5MHz (clocks observed using oscilloscope)
Data size: 4 MB
Now, in theory, if my SPI is operating at 5MHZ it should copy 5MBits/Sec. We are trying to copy 4MB so essentially it will be 32 Mega Bits. So in theory, our transfer should take about 7 seconds. Ok we have some implication overheads. My driver code can accept only up to 64Kb per read call so we chose to copy 40Kb for about 100 times to achieve this and we run this in a for loop.. Ok let me add a whooping 5 seconds of overhead (Sorry RH850!) so in total 12 seconds; well, lets add some more buffer and make it a comfort zone of 15 sec (Max expected!). But then when we run the code, its taking a whole 40seconds to finish the copy. We have checked the clock and it is 5MHz as expected and at least they are continuous.
Has anyone here faced this? Where can we look in to? Well I know I have some flash-driver provided by my vendor to dig in to but before I do that, I wanted to be sure! Any help will be really appreciated.
At a first glance, I can think about minimum 10 things which may be responsible for this. One thing I'm sure, this problem is complex. There is no simple "one line solution". The main suspect is what is not yours: the flash driver. So, isolate "pieces" one by one and verify them, starting from the bottom.
Is there operating system? DMA in use? Issue with memory or resource arbitration/sharing? Interrupts are in use or polling? Any higher priority jobs are running? Data read from registers or memory mapped? Generic SPI peripheral or special serial flash is used by the driver (I don't know RH850, some uC has it)?
Your post is not precise enough, so maybe these questions will help you. What I would do? My own driver!

(libusb) Confusion about continous isochronous USB streams

I am using a 32-bit AVR microcontroller (AT32UC3A3256) with High speed USB support. I want to stream data regularly from my PC to the device (without acknowledge of data), so exactly like a USB audio interface, except the data I want to send isn't audio. Such an interface is described here: http://www.edn.com/design/consumer/4376143/Fundamentals-of-USB-Audio.
I am a bit confused about USB isochronous transfers. I understand how a single transfer works, but how and when is the next subsequent transfer planned? I want a continuous stream of data that is calculated a little ahead of time, but streamed with minimum latency and without interruptions (except some occasional data loss). From my understanding, Windows is not a realtime OS so I think the transfers should not be planned with a timer every x milliseconds, but rather using interrupts/events? Or maybe a buffer needs to be filled continuously with as much data as there is available?
I think my question is still about the concepts of USB and not code-related, but if anyone wants to see my code, I am testing and modifying the "USB Vendor Class" example in the ASF framework of Atmel Studio, which contains the firmware source for the AVR and the source for the Windows EXE as well. The Windows example program uses libusb with a supplied driver.
Stephen -
You say "exactly like USB Audio"; but beware! The USB Audio class is very, very complicated because it implements a closed-loop servo system to establish long-term synchronisation between the PC and the audio device. You probably don't need all of that in your application.
To explain a bit more about long-term synchronisation: The audio codec at one end (e.g. the USB headphones) may run at a nominal 48KHz sampling rate, and the audio file at the other end (e.g. the PC) may be designed to offer 48 thousand samples per second, but the PC and the headphones are never going to run at exactly the same speed. Sooner or later there is going to be a buffer overrun or under-run. So the USB audio class implements a control pipe as well as the audio pipe(s). The control pipe is used to negotiate a slight speed-up or slow-down at one end, usually the Device end (e.g. headphones), to avoid data loss. That's why the USB descriptors for audio device class products are so incredibly complex.
If your application can tolerate a slight error in the speed at which data is delivered to the AVR from the PC, you can dispense with the closed-loop servo. That makes things much, much simpler.
You are absolutely right in assuming the need for long-term buffering when streaming data using isochronous pipes. A single isochronous transfer is pointless - you may as well use a bulk pipe for that. The whole reason for isochronous pipes is to handle data streaming. So a lot of look-ahead buffering has to be set up, just as you say.
I use LibUsbK for my iso transfers in product-specific applications which do not fit any preconceived USB classes. There is reasonably good documentation at libusbk for iso transfers. In short - you decide how many bytes per packet and how many packets per transfer. You decide how many buffers to pre-fill (I use five), and offer the libusbk driver the whole lot to start things going. Then you get callbacks as each of those buffers gets emptied by the driver, so you can fill them with new data. It works well for me, even though I have awkward sampling rates to deal with. In my case I set up a bunch of twenty-one packets where twenty of them carry 40 bytes and the twenty-first carries 44 bytes!
Hope that helps
- Tony

Cycle accurate emulation

I'm currently learning C for my next emulation project, a cycle accurate 68000 core (my last project being a non-cycle accurate Sega Master System emulator written in Java which is now on its third release). My query regards cycle level accuracy as taking things to this level is a new thing for me.
To break things down to a granularity of 1 CPU cycle, presumably I need to know how long memory accesses take and so on, but my question is that for instructions that take multiple cycles in their memory fetch/write stages, what is the CPU doing each cycle - e.g. are x amount of bits copied per cycle.
With my SMS emulator I didn't have to worry too much about M1 stages etc, as it just used a cycle count for each instruction - in other words it is only accurate to an instruction level, not a cycle level. I'm not looking for architecture specific details, merely an idea of what sort of things I should look out for when going to this level of granularity.
68k details are welcome however. Basically I'm wondering what is supposed to happen if a video chip reads from an area of memory whilst a CPU is still writing the data to it mid way through that phase of an instruction, and other similar situations. I hope I've made it clear enough, thank you.
For a really cycle accurate emulation you have first to decide on a master clock you want to use as reference. That should be the fastest clock at which's granularity the software running can detect differences in order of occurance. This could by the CPU clock, but in most cases the bus cycle time decides at which granularity events can be discerned (and that is often only a fraction of the CPU clock).
Then you need to find out the precendence order the different devices (IC's) connected to that bus have (if there is more than one bus master). An example would be if (and how) video DMA can delay the CPU.
There exist generally no at the same time events. Either the CPU writes before the DMA reads, or the other way around (that is still true in case of dual ported devices, you just need to consider the device's inherent predence mechanism).
Once you have a solid understanding which clock is the effectively controlling the granularity of discernible events you can think about how to structure the emulator to reproduce that behaviour exactly.
This way you can create a 100% cycle exact emulation, given you have enough information about all the devices behavior.
Sorry I can't give you more detailed info, I know nothing about the specifics of the Sega's hardware.
My guess is that you don't have to get in to excruciating detail to get good enough results for the timing for this sort of thing. Which you can't do anyway f you don't want to get into the specifics of the architecture.
Your main question seemed to be "what is supposed to happen if a video chip reads from an area of memory whilst a CPU is still writing the data to it". Generally on these older chips, the bus protocols are pretty simple (they're not packetized) and there is usually a pin that indicates that the bus is busy. So if the CPU is writing to memory, the video chip will simply have to wait until the CPU is done. Because of these sorts of limitations, dual ported ram was popular for a while so that the frame buffer could be simultaneously written by the CPU and read by the RAMDAC.

What are some practical applications of an FPGA?

I'm super excited about my program powering a little seven-segment display, but when I show it off to people not in the field, they always say "well what can you do with it?" I'm never able to give them a concise answer. Can anyone help me out?
First: They don't need to have volatile memory.
Indeed the big players (Xilinx, Altera) usually have their configuration on-chip in SRAM, so you need additional EEPROM/Flash/WhatEver(TM) to store it outside.
But there are others, e.g. Actel is one big player that come to mind, that has non-volatile configuration storage on their FPGAs (btw. this has also other advantages, as SRAM is usually not very radiation tolerant, and you have to require special measurements when you go into orbit).
There are two big things that justify FPGAS:
Price - They are not cheap. But sometimes you can't do something in software, and you need hardware for it. And when you are below a certain point in your required volume (e.g. because its just small series, or a prototype) an FPGA is MUCH cheaper than an ASIC. Also, while developing ASICs this allows - before a final state is reached - much higher turn-around times.
Reconfiguration - You can reconfigure your FPGA. That is something a processor or an ASIC can't do. There are some applications where you can use this: E.g. When you need the ability to fix something in the design, but you can't get physically to the device. Example for this: The mars orbiters/rovers used Xilinx FPGAs. When someone finds there a mistake (or wants to switch to a different coding for transmitting data or whatever), you can't replace the ship, as it is just not reachable. But with an FPGA you can just reconfigure and can apply your changes. Another scenario is, that you can have one single chip which is able to perform different accelerations, depending on the scenario. Imagine a smartphone, when telephoning the FPGA can be configured to make audio en-/decoding, when surfing it can work as a compression engine, when playing videos it can be configured as h264 decoder/accelerator. Another thing you could do is that you can match your hardware to your problem instance. E.g. Cisco uses many FPGAs in their hardware. You need the hardware to perform switching/routing/packet inspection with the required speed, and you can generate from actual setting matching engines directly into hardware.
Another thing which might come up soon (I know some car manufacturer thought about it), is for devices which include a lot of different electronics and have a big supply chain. It's more or less a combination of price and reconfiguration. It's more expensive to have 10 ASICs than 10 FPGAs - where both perform the same task, but it's cheaper to have 10 FPGAs with just one supplier and the need to hold just 1 type of chip at service and supply than to have 10 suppliers with the necessity to hold and manage 10 different chips in supply and service.
True story.
They allow you to fix design flaws in the custom data-acquisition boards for a multi-million dollar particle physics experiment that become obvious only after you have everything installed and are doing integration work and detector characterization.
You can evolve circuits, this is a bit old school evolutionary algorithms but starting from a set of random individuals you can select the circuits that score higher in a fitness function than the rest and breed them to create a new population ad infinitum. read up about Evolutionary Hardware, think this book covers FPGA's http://www.amazon.co.uk/Introduction-Evolvable-Hardware-Self-Adaptive-Computational/dp/0471719773/ref=sr_1_1?ie=UTF8&qid=1316308403&sr=8-1
Say for example you wanted a DSP circuit, you have an input signal and a desired output signal, starting with a random population you select perhaps only the fittest (bad) or perhaps a mixture of fitties and odd ones to create the next generation. after a number of generations you can open the lid and discover low and behold evolution has taken place and you have a circuit that may even out perform your initial expectations!
also read the field guide to genetic programming, it's free on the web somewhere.
There are limitations to software. On software, you're running at the CPU's clock rate, enabling you to only execute one instruction per clock cycle. On software, everything is high level, you do not control details that happen in the low level. You'll always be limited by the operating system or development board you are programming. This is true for popular development boards out there such as Arduinos and Raspberry Pi.
In FPGA hardware, you can precisely program and control what happens between each clock cycle, providing your computations the speed at the electron level (note: speed of electrons determines speed of electric signal transfers between hardware)
Now, we know FPGA implies Hardware, Speed of Electrons, which is much better than
CPU that implies Software, 1 instruction per clock cycle.
So why use FPGA when we can design our own boards using Printed Circuit Board, transistor level?
This is because FPGA's are programmable hardware! It is built such that you can program the connections of a board instead of wiring it up for a specific application. This explains why FPGA's are expensive! It is sort of a 'general hardware' or Programmable Hardware.
To argue why you should pick FPGA's despite their cost, the programmable hardware component allows:
Longer product cycle (you can update the programmable hardware on the customer's products which contains your FPGA by simply allowing them to programmed your updated HDL code into their FPGA)
Recovery for hardware bug. You simply allow them to download the corrected program onto their FPGA. (note: you cannot do this with specific hardware designs as you will have to spend millions to gather back your products, create new ones, and ship them back to customers)
For examples on the cool things FPGA can do, refer to Stanford's infamous ECE5760 course.
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/
Hope this helps!
Soon Chee Loong,
University of Toronto
FPGA are also used to test/research circuit design before they start mass production. This is happening in several sectors: image processing, signal processing, etc.
Edit - after few years we can now see more practical applications including finance and machine earning:
aerepospace
emulation
automotive
broadcast
high performance computers
medical
machine learning
finance (including cryptocoins)
I like this article: http://www.hpcwire.com/hpcwire/2011-07-13/jp_morgan_buys_into_fpga_supercomputing.html
My feeling is that FPGA's can sit directly in your streaming data at the point where it enters your the systems under your control. You can then crunch that data without going through the steps a GPGPU would require (bringing the data in off the network, passing it across the PCI Express bus and crunching it a Gb at a time).
There are good reasons for both, but I think the notion of whether you mind buffering the data is a good bellwether.
Here's another cool FPGA application:
https://ehsm.eu/m-labs.hk/m1.html
Automotive image processing is one interesting domain:
Providing lane-keeping support to the driver (disclosure: I wrote this page!):
http://www.conekt.co.uk/capabilities/50-fpga-for-ldw
Providing an aerial view of a car from 4 fisheye-lens cameras (with video):
http://www.logicbricks.com/Solutions/Surround-View-DA-System/Xylon-Test-Vehicle.aspx

Resources