Does anyone know why the design decision of having '[' and ']' or '{' and '}' ASCII key codes being two apart instead of one digit was made? OCD triggered.
Evolution of Character Codes
Have a look # the following article: https://web.archive.org/web/20050305043226/http://www.transbay.net/~enf/ascii/ascii.pdf
I found it from the following stackexchange article: https://softwareengineering.stackexchange.com/a/149901/94281
Ascii was an evolutionary result but was based on previous work/inventions such as telegrams and morse code.
Additionally, there were many different versions and proposals before we reached a final order and result.
It seems that in some of the initial proposals [ and ] had been placed together.
For example:
However, after the X3.2 meeting, the \ was added in between:
This is again visible in a publication from 1962:
Source: Source documents on the history of character codes, 1962-06
Substitution Characters
Reading the archive from Source Documents on the history of character Codes
page 38 shows that some of the characters were grouped together and were planned to be substituted with other characters in 26 character languages:
A similar note is made about the characters '< = >' in relation to substituting them for more business-friendly characters.
References:
The Evolution of Character Codes, 1874-1968 - Eric Fischer
https://github.com/ericfischer/ascii/blob/master/ascii.ms
Source documents on the history of character codes, 1962-06
Note: Researching this further to see why the X3.2 meeting resulted in this change.
Related
I found this commit from facebook infer, and I have no idea what \027[0K and \027[%iA means.
What does these special string mean? And (I think) if there are more strings like this, where can I find the full documentation about this?
Those are escape sequences to tell your terminal what to do.
For example, the sequence of characters represented by \027[0K (where \027 is ASCII decimal value for Esc character) tells the terminal to "clear line from cursor to the end."
One helpful document/guide on this subject can be found at https://shiroyasha.svbtle.com/escape-sequences-a-quick-guide-1
The facebook code is copied from another source here, which uses hard-coded formatters imitating termcap (this page gives some background). The original has comments indicating where its information came from.
The formatter uses "%i" for integers. That's a repeat-count for the cursor movement "cursor-up" \033[A
In most languages, \033 (octal) is used for the ASCII escape character. But this source (according to the github analysis) is written in OCaml, and is using the decimal value for the ASCII escape character. According to the OCaml syntax, you could use an octal value like this: \o033
Once you see that the formatting parts (how the escape character is represented, the use of %i to format a number), the rest of this is documented in several places.
The relevant standard is ECMA-48
the termcap (or analogous terminfo) information is in the terminal database.
Given:
echo '"Number' > temp.sh
./temp.sh
With this script, Bash prints this error message:
./temp.sh: line 1: unexpected EOF while looking for matching `"'
Why does it print out `"' versus something like '"'?
PS: I tried searching for a answer but only got answers to questions asking for help debugging this error. Instead I want to know why the error message prints outs a starting backtick versus a single quote.
Using separate open and close quotes is historically considered good form in English, and an essential part of proper typography. This fell partially out of style due to cost-saving measures (and attempts to conserve the limited 7-bit ASCII character space), but has never completely disappeared.
From Practical Typography:
Curly quotes are the quotation marks used in good typography.
From Wikipedia:
"Ambidextrous" quotation marks were introduced on typewriters to reduce the number of keys on the keyboard, and were inherited by computer keyboards and character sets. Some computer systems designed in the past had character sets with proper opening and closing quotes. However, the ASCII character set, which has been used on a wide variety of computers since the 1960s, only contains a straight single quote (U+0027 ' apostrophe) and double quote (U+0022 " quotation mark).
...and, a few paragraphs below, referring specifically to the (mis)use of the backtick as an open quote:
These same systems often drew the grave accent (`, U+0060) as an open quote glyph (actually a high-reversed-9 glyph, to preserve some usability as a grave). This gives a proper appearance at the cost of semantic correctness. Nothing similar was available for the double quote, so many people resorted to using two single quotes for double quotes, which would look like the following: [...]
In my terminal, when I'm typing over the end of a line, rather than start a new line, my new characters overwrite the beginning of the same line.
I have seen many StackOverflow questions on this topic, but none of them have helped me. Most have something to do with improperly bracketed colors, but as far as I can tell, my PS1 looks fine.
Here it is below, generated using bash -x:
PS1='\[\033[01;32m\]\w \[\033[1;36m\]☔︎ \[\033[00m\] '
Yes, that is in fact an umbrella with rain; I have my Bash prompt update with the weather using a script I wrote.
EDIT:
My BashWeather script actually can put any one of a few weather characters, so it would be great if we could solve for all of these, or come up with some other solution:
☂☃☽☀︎☔︎
If the umbrella with rain is particularly problematic, I can change that to the regular umbrella without issue.
The symbol being printed ☔︎ consists of two Unicode codepoints: U+2614 (UMBRELLA WITH RAIN DROPS) and U+FE0E (VARIATION SELECTOR-15). The second of these is a zero-length qualifier, which is intended to enforce "text style", as opposed to "emoji style", on the preceding symbol. If you're viewing this with a font can distinguish the two styles, the following might be the emoji version: ☔︉ Otherwise, you can see a table of text and emoji variants in Working Group document N4182 (the umbrella is near the top of page 3).
In theory, U+FE0E should be recognized as a zero-length codepoint, like any other combining character. However, it will not hurt to surround the variant selector in PS1 with the "non-printing" escape sequence \[…\].
It's a bit awkward to paste an isolated variant selector directly into a file, so I'd recommend using bash's unicode-escape feature:
WEATHERCHAR=$'\u2614\[\ufe0e\]'
#...
PS1=...${WEATHERCHAR}...
Note that \[ and \] are interpreted before parameter expansion, so WEATHERCHAR as defined above cannot be dynamically inserted into the prompt. An alternative would be to make the dynamically-inserted character just the $'\u2614' umbrella (or whatever), and insert the $'\[\ufe0e\]' in the prompt template along with the terminal color codes, etc.
Of course, it is entirely possible that the variant indicator isn't needed at all. It certainly makes no useful difference on my Ubuntu system, where the terminal font I use (Deja Vu Sans Mono) renders both variants with a box around the umbrella, which is simply distracting, while the fonts used in my browser seem to render the umbrella identically with and without variants. But YMMV.
This almost works for me, so should probably not be considered a complete solution. This is a stripped down prompt that consists of only an umbrella and a space:
PS1='\342\230\[\224\357\270\] '
I use the octal escapes for the UTF-8 encoding of the umbrella character, putting the last three bytes inside \[...\] so that bash doesn't think they take up space on the screen. I initially put the last four bytes in, but at least in my terminal, there is a display error where the umbrella is followed by an extra character (the question-mark-in-a-diamond glyph for missing characters), so the umbrella really does occupy two spaces.
This could be an issue with bash and 5-byte UTF-8 sequences; using a character with a 4-byte UTF-encoding poses no problem:
# U+10400 DESERET CAPITAL LETTER LONG I
# (looks like a lowercase delta)
PS1='\360\220\220\200 '
For some reason I need to fetch emails from /var/mail/username file. It seems like an append only file.
My question is, is it safe to parse the content of the /var/email/username file depending on the first line From username#host Mon Jun 20 16:50:15 2011? What if the similar pattern found inside the email body?
Furthermore, is there any opensource ruby script available for reference?
Yes, that seems like more or less the right way to parse the mbox format - from a quick scan of the RFC specification:
The structure of the separator lines
vary across implementations, but
usually contain the exact character
sequence of "From", followed by a
single Space character (0x20), an
email address of some kind, another
Space character, a timestamp sequence
of some kind, and an end-of- line
marker.
And...
Many implementations are also known
to escape message body lines that
begin with the character sequence of
"From ", so as to prevent confusion
with overly-liberal parsers that do
not search for full separator
lines. In the common case, a leading
Greater-Than symbol (0x3E) is used
for this purpose (with "From "
becoming ">From "). However, other
implementations are known not to
escape such lines unless they are
immediately preceded by a blank line
or if they also appear to contain
an email address and a timestamp.
Other implementations are also
known to perform secondary escapes
against these lines if they are
already escaped or quoted, while
others ignore these mechanisms
altogether.
Update:
There's also this: https://github.com/meh/ruby-mbox
I need to encode/convert a Unicode string to its escaped form, with backslashes. Anybody know how?
In Ruby 1.8.x, String#inspect may be what you are looking for, e.g.
>> multi_byte_str = "hello\330\271!"
=> "hello\330\271!"
>> multi_byte_str.inspect
=> "\"hello\\330\\271!\""
>> puts multi_byte_str.inspect
"hello\330\271!"
=> nil
In Ruby 1.9 if you want multi-byte characters to have their component bytes escaped, you might want to say something like:
>> multi_byte_str.bytes.to_a.map(&:chr).join.inspect
=> "\"hello\\xD8\\xB9!\""
In both Ruby 1.8 and 1.9 if you are instead interested in the (escaped) unicode code points, you could do this (though it escapes printable stuff too):
>> multi_byte_str.unpack('U*').map{ |i| "\\u" + i.to_s(16).rjust(4, '0') }.join
=> "\\u0068\\u0065\\u006c\\u006c\\u006f\\u0639\\u0021"
To use a unicode character in Ruby use the "\uXXXX" escape; where XXXX is the UTF-16 codepoint. see http://leejava.wordpress.com/2009/03/11/unicode-escape-in-ruby/
If you have Rails kicking around you can use the JSON encoder for this:
require 'active_support'
x = ActiveSupport::JSON.encode('µ')
# x is now "\u00b5"
The usual non-Rails JSON encoder doesn't "\u"-ify Unicode.
There are two components to your question as I understand it: Finding the numeric value of a character, and expressing such values as escape sequences in Ruby. Further, the former depends on what your starting point is.
Finding the value:
Method 1a: from Ruby with String#dump:
If you already have the character in a Ruby String object (or can easily get it into one), this may be as simple as displaying the string in the repl (depending on certain settings in your Ruby environment). If not, you can call the #dump method on it. For example, with a file called unicode.txt that contains some UTF-8 encoded data in it – say, the currency symbols €£¥$ (plus a trailing newline) – running the following code (executed either in irb or as a script):
s = File.read("unicode.txt", :encoding => "utf-8") # this may be enough, from irb
puts s.dump # this will definitely do it.
... should print out:
"\u20AC\u00A3\u00A5$\n"
Thus you can see that € is U+20AC, £ is U+00A3, and ¥ is U+00A5. ($ is not converted, since it's straight ASCII, though it's technically U+0024. The code below could be modified to give that information, if you actually need it. Or just add leading zeroes to the hex values from an ASCII table – or reference one that already does so.)
(Note: a previous answer suggested using #inspect instead of #dump. That sometimes works, but not always. For example, running ruby -E UTF-8 -e 'puts "\u{1F61E}".inspect' prints an unhappy face for me, rather than an escape sequence. Changing inspect to dump, though, gets me the escape sequence back.)
Method 1b: with Ruby using String#encode and rescue:
Now, if you're trying the above with a larger input file, the above may prove unwieldy – it may be hard to even find escape sequences in files with mostly ASCII text, or it may be hard to identify which sequences go with which characters. In such a case, one might replace the second line above with the following:
encodings = {} # hash to store mappings in
s.split("").each do |c| # loop through each "character"
begin
c.encode("ASCII") # try to encode it to ASCII
rescue Encoding::UndefinedConversionError # but if that fails
encodings[c] = $!.error_char.dump # capture a dump, mapped to the source character
end
end
# And then print out all the captured non-ASCII characters:
encodings.each do |char, dumped|
puts "#{char} encodes to #{dumped}."
end
With the same input as above, this would then print:
€ encodes to "\u20AC".
£ encodes to "\u00A3".
¥ encodes to "\u00A5".
Note that it's possible for this to be a bit misleading. If there are combining characters in the input, the output will print each component separately. For example, for input of 🙋🏾 ў ў, the output would be:
🙋 encodes to "\u{1F64B}".
🏾 encodes to "\u{1F3FE}".
ў encodes to "\u045E".
у encodes to "\u0443". ̆
encodes to "\u0306".
This is because 🙋🏾 is actually encoded as two code points: a base character (🙋 - U+1F64B), with a modifier (🏾, U+1F3FE; see also). Similarly with one of the letters: the first, ў, is a single pre-combined code point (U+045E), while the second, ў – though it looks the same – is formed by combining у (U+0443) with the modifier ̆ (U+0306 - which may or may not render properly, including on this page, since it's not meant to stand alone). So, depending on what you're doing, you may need to watch out for such things (which I leave as an exercise for the reader).
Method 2a: from web-based tools: specific characters:
Alternatively, if you have, say, an e-mail with a character in it, and you want to find the code point value to encode, if you simply do a web search for that character, you'll frequently find a variety of pages that give unicode details for the particular character. For example, if I do a google search for ✓, I get, among other things, a wiktionary entry, a wikipedia page, and a page on fileformat.info, which I find to be a useful site for getting details on specific unicode characters. And each of those pages lists the fact that that check mark is represented by unicode code point U+2713. (Incidentally, searching in that direction works well, too.)
Method 2b: from web-based tools: by name/concept:
Similarly, one can search for unicode symbols to match a particular concept. For example, I searched above for unicode check marks, and even on the Google snippet there was a listing of several code points with corresponding graphics, though I also find this list of several check mark symbols, and even a "list of useful symbols" which has a bunch of things, including various check marks.
This can similarly be done for accented characters, emoticons, etc. Just search for the word "unicode" along with whatever else you're looking for, and you'll tend to get results that include pages that list the code points. Which then brings us to putting that back into ruby:
Representing the value, once you have it:
The Ruby documentation for string literals describes two ways to represent unicode characters as escape sequences:
\unnnn Unicode character, where nnnn is exactly 4 hexadecimal digits ([0-9a-fA-F])
\u{nnnn ...} Unicode character(s), where each nnnn is 1-6 hexadecimal digits ([0-9a-fA-F])
So for code points with a 4-digit representation, e.g. U+2713 from above, you'd enter (within a string literal that's not in single quotes) this as \u2713. And for any unicode character (whether or not it fits in 4 digits), you can use braces ({ and }) around the full hex value for the code point, e.g. \u{1f60d} for 😍. This form can also be used to encode multiple code points in a single escape sequence, separating characters with whitespace. For example, \u{1F64B 1F3FE} would result in the base character 🙋 plus the modifier 🏾, thus ultimately yielding the abstract character 🙋🏾 (as seen above).
This works with shorter code points, too. For example, that currency character string from above (€£¥$) could be represented with \u{20AC A3 A5 24} – requiring only 2 digits for three of the characters.
You can directly use unicode characters if you just add #Encoding: UTF-8 to the top of your file. Then you can freely use ä, ǹ, ú and so on in your source code.
try this gem. It converts Unicode or non-ASCII punctuation and symbols to nearest ASCII punctuation and symbols
https://github.com/qwuen/punctuate
example usage:
"100٪".punctuate
=> "100%"
the gem uses the reference in https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg/current/docs/designDoc/UDF/unicode/DefaultTables/symbolTable.html for the conversion.