Speed Up Gensim's Word2vec for a Massive Dataset - gensim

I'm trying to build a Word2vec (or FastText) model using Gensim on a massive dataset which is composed of 1000 files, each contains ~210,000 sentences, and each sentence contains ~1000 words. The training was made on a 185gb RAM, 36-core machine.
I validated that
gensim.models.word2vec.FAST_VERSION == 1
First, I've tried the following:
files = gensim.models.word2vec.PathLineSentences('path/to/files')
model = gensim.models.word2vec.Word2Vec(files, workers=-1)
But after 13 hours I decided it is running for too long and stopped it.
Then I tried building the vocabulary based on a single file, and train based on all 1000 files as follows:
files = os.listdir['path/to/files']
model = gensim.models.word2vec.Word2Vec(min_count=1, workers=-1)
model.build_vocab(corpus_file=files[0])
for file in files:
model.train(corpus_file=file, total_words=model.corpus_total_words, epochs=1)
But I checked a sample of word vectors before and after the training, and there was no change, which means no actual training was done.
I can use some advise on how to run it quickly and successfully. Thanks!
Update #1:
Here is the code to check vector updates:
file = 'path/to/single/gziped/file'
total_words = 197264406 # number of words in 'file'
total_examples = 209718 # number of records in 'file'
model = gensim.models.word2vec.Word2Vec(iter=5, workers=12)
model.build_vocab(corpus_file=file)
wv_before = model.wv['9995']
model.train(corpus_file=file, total_words=total_words, total_examples=total_examples, epochs=5)
wv_after = model.wv['9995']
so the vectors: wv_before and wv_after are exactly the same

There's no facility in gensim's Word2Vec to accept a negative value for workers. (Where'd you get the idea that would be meaningful?)
So, it's quite possible that's breaking something, perhaps preventing any training from even being attempted.
Was there sensible logging output (at level INFO) suggesting that training was progressing in your trial runs, either against the PathLineSentences or your second attempt? Did utilities like top show busy threads? Did the output suggest a particular rate of progress & let you project-out a likely finishing time?
I'd suggest using a positive workers value and watching INFO-level logging to get a better idea what's happening.
Unfortunately, even with 36 cores, using a corpus iterable sequence (like PathLineSentences) puts gensim Word2Vec in a model were you'll likely get maximum throughput with a workers value in the 8-16 range, using far less than all your threads. But it will do the right thing, on a corpus of any size, even if it's being assembled by the iterable sequence on-the-fly.
Using the corpus_file mode can saturate far more cores, but you should still specify the actual number of worker threads to use – in your case, workers=36 – and it is designed to work on from a single file with all data.
Your code which attempts to train() many times with corpus_file has lots of problems, and I can't think of a way to adapt corpus_file mode to work on your many files. Some of the problems include:
you're only building the vocabulary from the 1st file, which means any words only appearing in other files will be unknown and ignored, and any of the word-frequency-driven parts of the Word2Vec algorithm may be working on unrepresentative
the model builds its estimate of the expected corpus size (eg: model.corpus_total_words) from the build_vocab() step, so every train() will behave as if that size is the total corpus size, in its progress-reporting & management of the internal alpha learning-rate decay. So those logs will be wrong, the alpha will be mismanaged in a fresh decay each train(), resulting in a nonsensical jigsaw up-and-down alpha over all files.
you're only iterating over each file's contents once, which isn't typical. (It might be reasonable in a giant 210-billion word corpus, though, if every file's text is equally and randomly representative of the domain. In that case, the full corpus once might be as good as iterating over a corpus that's 1/5th the size 5 times. But it'd be a problem if some words/patterns-of-usage are all clumped in certain files - the best training interleaves contrasting examples throughout each epoch and all epochs.)
min_count=1 is almost always unwise with this algorithm, and especially so in large corpora of typical natural-language word frequencies. Rare words, and especially those appearing only once or a few times, make the model gigantic but those words won't get good word-vectors, and keeping them in acts like noise interfering with the improvement of other more-common words.
I recommend:
Try the corpus iterable sequence mode, with logging and a sensible workers value, to at least get an accurate read of how long it might take. (The longest step will be the initial vocabulary scan, which is essentially single-threaded and must visit all data. But you can .save() the model after that step, to then later re-.load() it, tinker with settings, and try different train() approaches without repeating the slow vocabulary survey.)
Try aggressively-higher values of min_count (discarding more rare words for a smaller model & faster training). Perhaps also try aggressively-smaller values of sample (like 1e-05, 1e-06, etc) to discard a larger fraction of the most-frequent words, for faster training that also often improves overall word-vector quality (by spending relatively more effort on less-frequent words).
If it's still too slow, consider if you could using a smaller subsample of your corpus might be enough.
Consider the corpus_file method if you can roll much or all of your data into the single file it requires.

Related

What is the fastest way to intersect two large set of ids

The Problem
On a server, I host ids in a json file. From clients, I need to mandate the server to intersect and sometimes negate these ids (the ids never travel to the client even though the client instructs the server its operations to perform).
I typically have 1000's of ids, often have 100,000's of ids, and have a maximum of 56,000,000 of them, where each value is unique and between -100,000,000 and +100,000,000.
These ids files are stable and do not change (so it is possible to generate a different representation for it that is better adapted for the calculations if needed).
Sample ids
Largest file sizes
I need an algorithm that will intersect ids in the sub-second range for most cases. What would you suggest? I code in java, but do not limit myself to java for the resolution of this problem (I could use JNI to bridge to native language).
Potential solutions to consider
Although you could not limit yourselves to the following list of broad considerations for solutions, here is a list of what I internally debated to resolve the situation.
Neural-Network pre-qualifier: Train a neural-network for each ids list that accepts another list of ids to score its intersection potential (0 means definitely no intersection, 1 means definitely there is an intersection). Since neural networks are good and efficient at pattern recognition, I am thinking of pre-qualifying a more time-consuming algorithm behind it.
Assembly-language: On a Linux server, code an assembly module that does such algorithm. I know that assembly is a mess to maintain and code, but sometimes one need the speed of an highly optimized algorithm without the overhead of a higher-level compiler. Maybe this use-case is simple enough to benefit from an assembly language routine to be executed directly on the Linux server (and then I'd always pay attention to stick with the same processor to avoid having to re-write this too often)? Or, alternately, maybe C would be close enough to assembly to produce clean and optimized assembly code without the overhead to maintain assembly code.
Images and GPU: GPU and image processing could be used and instead of comparing ids, I could BITAND images. That is, I create a B&W image of each ids list. Since each id have unique values between -100,000,000 and +100,000,000 (where a maximum of 56,000,000 of them are used), the image would be mostly black, but the pixel would become white if the corresponding id is set. Then, instead of keeping the list of ids, I'd keep the images, and do a BITAND operation on both images to intersect them. This may be fast indeed, but then to translate the resulting image back to ids may be the bottleneck. Also, each image could be significantly large (maybe too large for this to be a viable solution). An estimate of a 200,000,000 bits sequence is 23MB each, just loading this in memory is quite demanding.
String-matching algorithms: String comparisons have many adapted algorithms that are typically extremely efficient at their task. Create a binary file for each ids set. Each id would be 4 bytes long. The corresponding binary file would have each and every id sequenced as their 4 bytes equivalent into it. The algorithm could then be to process the smallest file to match each 4 bytes sequence as a string into the other file.
Am I missing anything? Any other potential solution? Could any of these approaches be worth diving into them?
I did not yet try anything as I want to secure a strategy before I invest what I believe will be a significant amount of time into this.
EDIT #1:
Could the solution be a map of hashes for each sector in the list? If the information is structured in such a way that each id resides within its corresponding hash key, then, the smaller of the ids set could be sequentially ran and matching the id into the larger ids set first would require hashing the value to match, and then sequentially matching of the corresponding ids into that key match?
This should make the algorithm an O(n) time based one, and since I'd pick the smallest ids set to be the sequentially ran one, n is small. Does that make sense? Is that the solution?
Something like this (where the H entry is the hash):
{
"H780" : [ 45902780, 46062780, -42912780, -19812780, 25323780, 40572780, -30131780, 60266780, -26203780, 46152780, 67216780, 71666780, -67146780, 46162780, 67226780, 67781780, -47021780, 46122780, 19973780, 22113780, 67876780, 42692780, -18473780, 30993780, 67711780, 67791780, -44036780, -45904780, -42142780, 18703780, 60276780, 46182780, 63600780, 63680780, -70486780, -68290780, -18493780, -68210780, 67731780, 46092780, 63450780, 30074780, 24772780, -26483780, 68371780, -18483780, 18723780, -29834780, 46202780, 67821780, 29594780, 46082780, 44632780, -68406780, -68310780, -44056780, 67751780, 45912780, 40842780, 44642780, 18743780, -68220780, -44066780, 46142780, -26193780, 67681780, 46222780, 67761780 ],
"H782" : [ 27343782, 67456782, 18693782, 43322782, -37832782, 46152782, 19113782, -68411782, 18763782, 67466782, -68400782, -68320782, 34031782, 45056782, -26713782, -61776782, 67791782, 44176782, -44096782, 34041782, -39324782, -21873782, 67961782, 18703782, 44186782, -31143782, 67721782, -68340782, 36103782, 19143782, 19223782, 31711782, 66350782, 43362782, 18733782, -29233782, 67811782, -44076782, -19623782, -68290782, 31721782, 19233782, 65726782, 27313782, 43352782, -68280782, 67346782, -44086782, 67741782, -19203782, -19363782, 29583782, 67911782, 67751782, 26663782, -67910782, 19213782, 45992782, -17201782, 43372782, -19992782, -44066782, 46142782, 29993782 ],
"H540" : [...
You can convert each file (list of ids) into a bit-array of length 200_000_001, where bit at index j is set if the list contains value j-100_000_000. It is possible, because the range of id values is fixed and small.
Then you can simply use bitwise and and not operations to intersect and negate lists of ids. Depending on the language and libraries used, it would require operating element-wise: iterating over arrays and applying corresponding operations to each index.
Finally, you should measure your performance and decide whether you need to do some optimizations, such as parallelizing operations (you can work on different parts of arrays on different processors), preloading some of arrays (or all of them) into memory, using GPU, etc.
First, the bitmap approach will produce the required performance, at a huge overhead in memory. You'll need to benchmark it, but I'd expect times of maybe 0.2 seconds, with that almost entirely dominated by the cost of loading data from disk, and then reading the result.
However there is another approach that is worth considering. It will use less memory most of the time. For most of the files that you state, it will perform well.
First let's use Cap'n Proto for a file format. The type can be something like this:
struct Ids {
is_negated #0 :Bool;
ids #1 :List(Int32);
}
The key is that ids are always kept sorted. So list operations are a question of running through them in parallel. And now:
Applying not is just flipping is_negated.
If neither is negated, it is a question of finding IDs in both lists.
If the first is not negated and the second is, you just want to find IDs in the first that are not in the second.
If the first is negated and the second is not, you just want to find IDs in the second that are not in the first.
If both are negated, you just want to find all ids in either list.
If your list has 100k entries, then the file will be about 400k. A not requires copying 400k of data (very fast). And intersecting with another list of the same size involves 200k comparisons. Integer comparisons complete in a clock cycle, and branch mispredictions take something like 10-20 clock cycles. So you should be able to do this operation in the 0-2 millisecond range.
Your worst case 56,000,000 file will take over 200 MB and intersecting 2 of them can take around 200 million operations. This is in the 0-2 second range.
For the 56 million file and a 10k file, your time is almost all spent on numbers in the 56 million file and not in the 10k one. You can speed that up by adding a "galloping" mode where you do a binary search forward in the larger file looking for the next matching number and picking most of them. Do be warned that this code tends to be tricky and involves lots of mispredictions. You'll have to benchmark it to find out how big a size difference is needed.
In general this approach will lose for your very biggest files. But it will be a huge win for most of the sizes of file that you've talked about.

Assessing doc2vec accuracy

I am trying to assess a doc2vec model based on the code from here. Basically, I want to know the percentual of inferred documents are found to be most similar to itself. This is my current code an:
for doc_id, doc in enumerate(cur.execute('SELECT Text FROM Patents')):
docs += 1
doc = clean_text(doc)
inferred_vector = model.infer_vector(doc)
sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs))
rank = [docid for docid, sim in sims].index(doc_id)
ranks.append(rank)
counter = collections.Counter(ranks)
accuracy = counter[0] / docs
This code works perfectly with smaller datasets. However, since I have a huge file with millions of documents, this code becomes too slow, it would take months to compute. I profiled my code and most of the time is consumed by the following line: sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs)).
If I am not mistaken, this is having to measure each document to every other document. I think computation time might be massively reduced if I change this to topn=1 instead since the only thing I want to know is if the most similar document is itself or not. Doing this will basically take each doc (i.e., inferred_vector), measure its most similar document (i.e., topn=1), and then I just see if it is itself or not. How could I implement this? Any help or idea is welcome.
To have most_similar() return only the single most-similar document, that is as simple as specifying topn=1.
However, to know which one document of the millions is the most-similar to a single target vector, the similarities to all the candidates must be calculated & sorted. (If even one document was left out, it might have been the top-ranked one!)
Making sure absolutely no virtual-memory swapping is happening will help ensure that brute-force comparison happens as fast as possible, all in RAM – but with millions of docs, it will still be time-consuming.
What you're attempting is a fairly simple "self-check" as to whether training led to self-consistent model: whether the re-inference of a document creates a vector "very close to" the same doc-vector left over from bulk training. Failing that will indicate some big problems in doc-prep or training, but it's not a true measure of the model's "accuracy" for any real task, and the model's value is best evaluated against your intended use.
Also, because this "re-inference self-check" is just a crude sanity check, there's no real need to do it for every document. Picking a thousand (or ten thousand, or whatever) random documents will give you a representative idea of whether most of the re-inferred vectors have this quality, or not.
Similarly, you could simply check the similarity of the re-inferred vector against the single in-model vector for that same document-ID, and check whether they are "similar enough". (This will be much faster, but could also be done on just a random sample of docs.) There's no magic proper threshold for "similar enough"; you'd have to pick one that seems to match your other goals. For example, using scikit-learn's cosine_similarity() to compare the two vectors:
from sklearn.metrics.pairwise import cosine_similarity
# ...
inferred_vector = model.infer_vector(doc_words)
looked_up_vector = model.dv[doc_id]
self_similarity = cosine_similarity([inferred_vector], [looked_up_vector])[0]
# then check that value against some threshold
(You have to wrap the single vectors in lists as arguments to cosine_similarity(), then access the 0th element of the return value, because it is designed to usually work on larger lists of vectors.)
With this calculation, you wouldn't know if, for example, some of the other stored-doc-vectors are a little closer to your inferred target - but that may not be that important, anyway. The docs might be really similar! And while the original "closest to itself" self-check will fail miserably if there were major defects in training, even a well-trained model will likely have some cases where natural model jitter prevents a "closest to itself" for every document. (With more documents inside the same number of dimensions, or certain corpuses with lots of very-similar documents, this would become more common... but not be a concerning indicator of any model problems.)

word2vec window size at sentence boundaries

I am using word2vec (and doc2vec) to get embeddings for sentences, but i want to completely ignore word order.
I am currently using gensim, but can use other packages if necessary.
As an example, my text looks like this:
[
['apple', 'banana','carrot','dates', 'elderberry', ..., 'zucchini'],
['aluminium', 'brass','copper', ..., 'zinc'],
...
]
I intentionally want 'apple' to be considered as close to 'zucchini' as it is to 'banana' so I have set the window size to a very large number, say 1000.
I am aware of 2 problems that may arise with this.
Problem 1:
The window might roll in at the start of a sentence creating the following training pairs:
('apple', ('banana')), ('apple', ('banana', 'carrot')), ('apple', ('banana', 'carrot', 'date')) before it eventually gets to the correct ('apple', ('banana','carrot', ..., 'zucchini')).
This would seem to have the effect of making 'apple' closer to 'banana' than 'zucchini',
since their are so many more pairs containing 'apple' and 'banana' than there are pairs containing 'apple' and 'zucchini'.
Problem 2:
I heard that pairs are sampled with inverse proportion to the distance from the target word to the context word- This also causes an issue making nearby words more seem more connected than I want them to be.
Is there a way around problems 1 and 2?
Should I be using cbow as opposed to sgns? Are there any other hyperparameters that I should be aware of?
What is the best way to go about removing/ignoring the order in this case?
Thank you
I'm not sure what you mean by "Problem 1" - there's no "roll" or "wraparound" in the usual interpretation of a word2vec-style algorithm's window parameter. So I wouldn't worry about this.
Regarding "Problem 2", this factor can be essentially made negligible by the choice of a giant window value – say for example, a value one million times larger than your largest sentence. Then, any difference in how the algorithm treats the nearest-word and the 2nd-nearest-word is vanishingly tiny.
(More specifically, the way the gensim implementation – which copies the original Google word2vec.c in this respect – achieves a sort of distance-based weighting is actually via random dynamic shrinking of the actual window used. That is, for each visit during training to each target word, the effective window truly used is some random number from 1 to the user-specified window. By effectively using smaller windows much of the time, the nearer words have more influence – just without the cost of performing other scaling on the whole window's words every time. But in your case, with a giant window value, it will be incredibly rare for the effective-window to ever be smaller than your actual sentences. Thus every word will be included, equally, almost every time.)
All these considerations would be the same using SG or CBOW mode.
I believe a million-times-larger window will be adequate for your needs, for if for some reason it wasn't, another way to essentially cancel-out any nearness effects could be to ensure your corpus's items individual word-orders are re-shuffled between each time they're accessed as training data. That ensures any nearness advantages will be mixed evenly across all words – especially if each sentence is trained on many times. (In a large-enough corpus, perhaps even just a 1-time shuffle of each sentence would be enough. Then, over all examples of co-occurring words, the word co-occurrences would be sampled in the right proportions even with small windows.)
Other tips:
If your training data starts in some arranged order that clumps words/topics together, it can be beneficial to shuffle them into a random order instead. (It's better if the full variety of the data is interleaved, rather than presented in runs of many similar examples.)
When your data isn't true natural-language data (with its usual distributions & ordering significance), it may be worth it to search further from the usual defaults to find optimal metaparameters. This goes for negative, sample, & especially ns_exponent. (One paper has suggested the optimal ns_exponent for training vectors for recommendation-systems is far different from the usual 0.75 default for natural-language modeling.)

Gensim Word2Vec Model trained but not saved

I am using gensim and executed the following code (simplified):
model = gensim.models.Word2Vec(...)
mode.build_vocab(sentences)
model.train(...)
model.save('file_name')
After days my code finished model.train(...). However, during saving, I experienced:
Process finished with exit code 137 (interrupted by signal 9: SIGKILL)
I noticed that there were some npy files generated:
<...>.trainables.syn1neg.npy
<...>.trainables.vectors_lockf.npy
<...>.wv.vectors.npy
Are those intermediate results I can re-use or do I have to rerun the entire process?
Those are parts of the saved model, but unless the master file_name file (a Python-pickled object) exists and is complete, they may be hard to re-use.
However, if your primary interest is the final word-vectors, those are in the .wv.vectors.npy file. If it appears to be full-length (same size at the syn1neg file), it may be complete. What you're missing is the dict that tells you which word is in which index.
So, the following might work:
Repeat the original process, with the exact same corpus & model parameters, but only through the build_vocab() step. At that point, the new model.wv.vocab dict should be identical as the one from the failed-save-run.
Save that model, without ever train()ing it, to a new filename.
Confirming that newmodel.wv.vectors.npy (with randomly-initialized untrained vectors) is the same size as oldmodel.wv.vectors.npy, copy the oldmodel file to the newmodel's name.
Re-load the new model, and run some sanity checks that the words make sense.
Perhaps, save off just the word-vectors, using something like newmodel.wv.save() or newmodel.wvsave_word2vec_format().
Potentially, the resurrected newmodel could also be patched to use the old syn1neg file as well, if it appears complete. It might work to further train the patched model (either with or without having reused the older syn1neg).
Separately: only the very largest corpuses, or an installation missing the gensim cython optimizations, or a machine without enough RAM (and thus swapping during training), would usually require a training session taking days. You might be able to run much faster. Check:
Is any virtual-memory swapping happening during the entire training? If it is, it will be disastrous for training throughput, and you should use a machine with more RAM or be more aggressive about trimming the vocabulary/model size with a higher min_count. (Smaller min_count values mean a larger model, slower training, poor-quality vectors for words with just a few examples, and also counterintuitively worse-quality vectors for more-frequent words too, because of interference from the noisy rare words. It's usually better to ignore lowest-frequency words.)
Is there any warning displayed about a "slow version" (pure Python with no effective multi-threading) being used? If so your training will be ~100X slower than if that problem is resolved. If the optimized code is available, maximum training throughput will likely be achieved with some workers value between 3 and 12 (but never larger than the number of machine CPU cores).
For a very large corpus, the sample parameter can be made more aggressive – such as 1e-04 or 1e-05 instead of the default 1e-03 – and it may both speed training and improve vector quality, by avoiding lots of redundant overtraining of the most-frequent words.
Good luck!

Comparing two large datasets using a MapReduce programming model

Let's say I have two fairly large data sets - the first is called "Base" and it contains 200 million tab delimited rows and the second is call "MatchSet" which has 10 million tab delimited rows of similar data.
Let's say I then also have an arbitrary function called Match(row1, row2) and Match() essentially contains some heuristics for looking at row1 (from MatchSet) and comparing it to row2 (from Base) and determining if they are similar in some way.
Let's say the rules implemented in Match() are custom and complex rules, aka not a simple string match, involving some proprietary methods. Let's say for now Match(row1,row2) is written in psuedo-code so implementation in another language is not a problem (though it's in C++ today).
In a linear model, aka program running on one giant processor - we would read each line from MatchSet and each line from Base and compare one to the other using Match() and write out our match stats. For example we might capture: X records from MatchSet are strong matches, Y records from MatchSet are weak matches, Z records from MatchSet do not match. We would also write the strong/weak/non values to separate files for inspection. Aka, a nested loop of sorts:
for each row1 in MatchSet
{
for each row2 in Base
{
var type = Match(row1,row2);
switch(type)
{
//do something based on type
}
}
}
I've started considering Hadoop streaming as a method for running these comparisons as a batch job in a short amount of time. However, I'm having a bit of a hardtime getting my head around the map-reduce paradigm for this type of problem.
I understand pretty clearly at this point how to take a single input from hadoop, crunch the data using a mapping function and then emit the results to reduce. However, the "nested-loop" approach of comparing two sets of records is messing with me a bit.
The closest I'm coming to a solution is that I would basically still have to do a 10 million record compare in parallel across the 200 million records so 200 million/n nodes * 10 million iterations per node. Is that that most efficient way to do this?
From your description, it seems to me that your problem can be arbitrarily complex and could be a victim of the curse of dimensionality.
Imagine for example that your rows represent n-dimensional vectors, and that your matching function is "strong", "weak" or "no match" based on the Euclidean distance between a Base vector and a MatchSet vector. There are great techniques to solve these problems with a trade-off between speed, memory and the quality of the approximate answers. Critically, these techniques typically come with known bounds on time and space, and the probability to find a point within some distance around a given MatchSet prototype, all depending on some parameters of the algorithm.
Rather than for me to ramble about it here, please consider reading the following:
Locality Sensitive Hashing
The first few hits on Google Scholar when you search for "locality sensitive hashing map reduce". In particular, I remember reading [Das, Abhinandan S., et al. "Google news personalization: scalable online collaborative filtering." Proceedings of the 16th international conference on World Wide Web. ACM, 2007] with interest.
Now, on the other hand if you can devise a scheme that is directly amenable to some form of hashing, then you can easily produce a key for each record with such a hash (or even a small number of possible hash keys, one of which would match the query "Base" data), and the problem becomes a simple large(-ish) scale join. (I say "largish" because joining 200M rows with 10M rows is quite a small if the problem is indeed a join). As an example, consider the way CDDB computes the 32-bit ID for any music CD CDDB1 calculation. Sometimes, a given title may yield slightly different IDs (i.e. different CDs of the same title, or even the same CD read several times). But by and large there is a small set of distinct IDs for that title. At the cost of a small replication of the MatchSet, in that case you can get very fast search results.
Check the Section 3.5 - Relational Joins in the paper 'Data-Intensive Text Processing
with MapReduce'. I haven't gone in detail, but it might help you.
This is an old question, but your proposed solution is correct assuming that your single stream job does 200M * 10M Match() computations. By doing N batches of (200M / N) * 10M computations, you've achieved a factor of N speedup. By doing the computations in the map phase and then thresholding and steering the results to Strong/Weak/No Match reducers, you can gather the results for output to separate files.
If additional optimizations could be utilized, they'd like apply to both the single stream and parallel versions. Examples include blocking so that you need to do fewer than 200M * 10M computations or precomputing constant portions of the algorithm for the 10M match set.

Resources