Related
I have a simple example where a graph of polygon is created and saved to an svg file. However, the polygon is partially saved only. So how can I resize the graph?
#include <string>
#include <fstream>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/geometries/adapted/c_array.hpp>
// Using the boost namespace
using namespace boost::geometry;
// Register the C array points for boost
BOOST_GEOMETRY_REGISTER_C_ARRAY_CS(cs::cartesian)
template <typename Geometry>
void create_svg(std::string const& file_path, Geometry const& geometry, std::string
const& style) {
using PointType = typename point_type<Geometry>::type;
std::ofstream svg_file(file_path.c_str());
svg_mapper<PointType> mapper(svg_file, 2000, 2000);
mapper.add(geometry);
mapper.map(geometry, style);
}
int main() {
model::polygon<model::d2::point_xy<double>, false> polygon;
double points[][2] = {{0., 0.}, {2., 1.}, {3., 3.}, {-0.5, 0.5}, {0., 0.}};
append(polygon, points);
std::string style{"fill-rule:nonzero;fill-opacity:0.5;fill:yellow;stroke:black;stroke-width:2;"};
create_svg("image.svg", polygon, style);
return 0;
}
The output is like:
It seems that somehow the scale factor/bounding box get miscalculated.
Using
bg::svg_mapper<PointType> mapper(svg_file, 400, 400);
works fine. If all coords get scaled at (larger than) integral grid, all is fine.
I tried to isolate any contibuting factor (integral coordinate type, clockwise orientation polygons, SameScale = true template argument for the svg_mapper) but it all seems unrelated. Ubsan did not flag anything. I would report this at the library. Meanwhile, try smaller SVG dimensions to "hide" the issue:
Live On Coliru
#include <fstream>
#include <iostream>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/polygon.hpp>
// Using the boost namespace
namespace bg = boost::geometry;
template <typename Geometry>
void create_svg(std::string const& file_path, Geometry const& geometry,
std::string const& style)
{
using PointType = typename bg::point_type<Geometry>::type;
std::ofstream svg_file(file_path);
bg::svg_mapper<PointType/*, true*/> mapper(svg_file, 400, 400);
mapper.add(geometry);
mapper.map(geometry, style);
}
template <typename T> void check(T& geo) {
for (std::string reason; !bg::is_valid(geo, reason); bg::correct(geo)) {
std::cout << "Correcting: " << reason << "\n";
}
}
int main()
{
bg::model::polygon<bg::model::d2::point_xy<double>> polygon{
{{0, 0}, {-.5, .5}, {3, 3}, {2, 1}, {0, 0}}};
check(polygon);
std::string style{"fill-rule:nonzero;fill-opacity:0.5;fill:yellow;stroke:"
"black;stroke-width:2;"};
create_svg("image.svg", polygon, style);
}
Rendering:
BREAKTHROUGH
I just noticed that for me Chrome renders the "weird" SVG as
I thought is was strange that is is rendered differently from your question.
I just thought to check with Inkscape, and lo and behold, it comes out "normal":
The x/y rulers seem to indicate correct scaling. So my best theory is that it's a browser-specific limitation that doesn't render "very large" SVG scales well?
I have a QR code in .JPG format. I load it using OpenCV 3.4.4. Now, I create a new X11 window using XCreateSimpleWindow(). Then, I will resize the QR image to that of this new window.
Next, I want to put this resized QR code into the window. I tried using XPutImage(), but without any success, probably because I don't know the usage.
For using XPutImage(), I first took the image of the X11 window using XGetImage(); then obtained the pixel values of the QR image, then assigned that to the pixel value of the image obtained through XGetImage.
Once I had this XImage, I tried putting it to the window using XPutImage. But, it is still showing a black window.
There is no error in the terminal, but result is not as desired.
Any solution to this problem? Like, how to change the background of the window (X11) w.r.t a sample image, and using XPutImage()?
The code goes like this...
// Written by Ch. Tronche (http://tronche.lri.fr:8000/)
// Copyright by the author. This is unmaintained, no-warranty free software.
// Please use freely. It is appreciated (but by no means mandatory) to
// acknowledge the author's contribution. Thank you.
// Started on Thu Jun 26 23:29:03 1997
//
// Xlib tutorial: 2nd program
// Make a window appear on the screen and draw a line inside.
// If you don't understand this program, go to
// http://tronche.lri.fr:8000/gui/x/xlib-tutorial/2nd-program-anatomy.html
//
// compilation:
// g++ -o go qrinX11.cpp `pkg-config --cflags --libs opencv` -lX11
//
#include <opencv2/opencv.hpp>
#include "opencv2/opencv.hpp" // FOR OpenCV
#include <opencv2/core.hpp> // Basic OpenCV structures (cv::Mat)
#include <opencv2/videoio.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <bits/stdc++.h>
#include <X11/Xlib.h> // Every Xlib program must include this
#include <assert.h> // I include this to test return values the lazy way
#include <unistd.h> // So we got the profile for 10 seconds
#include <X11/Xutil.h>
#include <X11/keysym.h>
#include <X11/Xlib.h> // Every Xlib program must include this
#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/extensions/Xcomposite.h>
#include <X11/extensions/Xfixes.h>
#include <X11/extensions/shape.h>
#define NIL (0) // A name for the void pointer
using namespace cv;
using namespace std;
int main()
{
XGCValues gr_values;
//GC gc;
XColor color, dummy;
Display *dpy = XOpenDisplay(NIL);
//assert(dpy);
//int screen = DefaultScreen(dpy);
// Get some colors
int blackColor = BlackPixel(dpy, DefaultScreen(dpy));
int whiteColor = WhitePixel(dpy, DefaultScreen(dpy));
// Create the window
Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0, 0,
200, 100, 0, whiteColor, blackColor);
// We want to get MapNotify events
XSelectInput(dpy, w, StructureNotifyMask);
XMapWindow(dpy, w);
// Wait for the MapNotify event
for(;;) {
XEvent e;
XNextEvent(dpy, &e);
if (e.type == MapNotify)
break;
}
Window focal = w;
XWindowAttributes gwa;
XGetWindowAttributes(dpy, w, &gwa);
int wd1 = gwa.width;
int ht1 = gwa.height;
XImage *image = XGetImage(dpy, w, 0, 0 , wd1, ht1, AllPlanes, ZPixmap);
unsigned long rm = image->red_mask;
unsigned long gm = image->green_mask;
unsigned long bm = image->blue_mask;
Mat img(ht1, wd1, CV_8UC3); // OpenCV Mat object is initilaized
Mat scrap = imread("qr.jpg");//(wid, ht, CV_8UC3);
resize(scrap, img, img.size(), CV_INTER_AREA);
for (int x = 0; x < wd1; x++)
for (int y = 0; y < ht1 ; y++)
{
unsigned long pixel = XGetPixel(image,x,y);
unsigned char blue = pixel & bm; // Applying the red/blue/green mask to obtain the indiv channel values
unsigned char green = (pixel & gm) >> 8;
unsigned char red = (pixel & rm) >> 16;
Vec3b color = img.at<Vec3b>(Point(x,y)); // Store RGB values in the OpenCV image
//color[0] = blue;
//color[1] = green;
//color[2] = red;
//img.at<Vec3b>(Point(x,y)) = color;
pixel = color[0];//&color[1]&color[2];
}
namedWindow("QR", CV_WINDOW_NORMAL);
imshow("QR", img);
cout << "herererere\n";
GC gc = XCreateGC(dpy, w, 0, NIL);
XPutImage(dpy, w, gc, image, 0, 0, wd1, ht1, wd1, ht1);
waitKey(0);
//sleep(3);
return 0;
}
Alright, solved it on my own. There was a silly mistake at changing the pixel value and updating it to the actual image and then putting it to the background of the window.
First use XPutPixel(), then use XPutImage()
Here is the final and correct method:
// compilation:
// g++ -o go qrinX11.cpp `pkg-config --cflags --libs opencv` -lX11
//
#include <opencv2/opencv.hpp>
#include "opencv2/opencv.hpp" // FOR OpenCV
#include <opencv2/core.hpp> // Basic OpenCV structures (cv::Mat)
#include <opencv2/videoio.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <bits/stdc++.h>
#include <X11/Xlib.h> // Every Xlib program must include this
#include <assert.h> // I include this to test return values the lazy way
#include <unistd.h> // So we got the profile for 10 seconds
#include <X11/Xutil.h>
#include <X11/keysym.h>
#include <X11/Xlib.h> // Every Xlib program must include this
#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/extensions/Xcomposite.h>
#include <X11/extensions/Xfixes.h>
#include <X11/extensions/shape.h>
#define NIL (0) // A name for the void pointer
using namespace cv;
using namespace std;
int main()
{
XGCValues gr_values;
//GC gc;
XColor color, dummy;
Display *dpy = XOpenDisplay(NIL);
//assert(dpy);
//int screen = DefaultScreen(dpy);
// Get some colors
int blackColor = BlackPixel(dpy, DefaultScreen(dpy));
int whiteColor = WhitePixel(dpy, DefaultScreen(dpy));
// Create the window
Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0, 0,
200, 100, 0, whiteColor, blackColor);
// We want to get MapNotify events
XSelectInput(dpy, w, StructureNotifyMask);
XMapWindow(dpy, w);
// Wait for the MapNotify event
for(;;) {
XEvent e;
XNextEvent(dpy, &e);
if (e.type == MapNotify)
break;
}
Window focal = w;
XWindowAttributes gwa;
XGetWindowAttributes(dpy, w, &gwa);
int wd1 = gwa.width;
int ht1 = gwa.height;
XImage *image = XGetImage(dpy, w, 0, 0 , wd1, ht1, AllPlanes, ZPixmap);
unsigned long rm = image->red_mask;
unsigned long gm = image->green_mask;
unsigned long bm = image->blue_mask;
Mat img(ht1, wd1, CV_8UC3); // OpenCV Mat object is initilaized
Mat scrap = imread("qr.jpg");//(wid, ht, CV_8UC3);
resize(scrap, img, img.size(), CV_INTER_AREA);
for (int x = 0; x < wd1; x++)
for (int y = 0; y < ht1 ; y++)
{
unsigned long pixel = XGetPixel(image,x,y);
Vec3b color = img.at<Vec3b>(Point(x,y));
pixel = 65536 * color[2] + 256 * color[1] + color[0];
XPutPixel(image, x, y, pixel);
}
namedWindow("QR", CV_WINDOW_NORMAL);
imshow("QR", img);
GC gc = XCreateGC(dpy, w, 0, NIL);
XPutImage(dpy, w, gc, image, 0, 0, 0, 0, wd1, ht1);
waitKey(0);
return 0;
}
Simplicity is key, and improves performance (in this case):
//..
// Mat img(ht1, wd1, CV_8UC3); // OpenCV Mat object is initilaized
cv::Mat img(ht1, wd1, CV_8UC4, image->data); // initilaize with existing mem
Mat scrap = imread("qr.jpg");//(wid, ht, CV_8UC3);
cv::cvtColor(scrap,scrap,cv::COLOR_BGR2BGRA);
resize(scrap, img, img.size(), cv::INTER_AREA);
// .. and we can skip the for loops
namedWindow("QR", CV_WINDOW_NORMAL);
imshow("QR", img);
// .. etc
I've run into a quite odd performance issue. So far I've reduced the problem to this: I'm rendering 20x20x20 cubes in a grid, using glDrawElementsInstanced, which works fine as long as my camera is far away from the origin, however when it gets closer to the origin, it starts grinding to a halt.
I'm defining my model view projection matrix through:
float distance=3.8;
Projection = glm::perspective(65.0f, (float)(width)/height, 0.1f, 300.0f);
View = glm::lookAt( glm::vec3(0,0,-distance),
glm::vec3(0,0,10),
glm::vec3(0,1,0));
Model = glm::rotate(glm::mat4(1.0f), 0.0f, glm::vec3(0.25f, 1.0f,0.75f));
With distance at 40, there's no problems, but when distance decreases to about 3.8 and lower, everything grinds to a halt.
The actual call to rendering is carried out through:
glBindVertexArray(cubeVAO);
glDrawElementsInstanced(GL_TRIANGLES, indices.size(),GL_UNSIGNED_INT,(GLvoid*)(0),latticePoints.size());
While putting all the vertices in a single buffer and rendering by calling:
glBindVertexArray(nonInstancedVAO);
glDrawArrays(GL_TRIANGLES, 0,vertices.size() );
Completely removes the behavior. Anyone who's experienced similar behavior who can point me in the direction of a solution? If failing that, anyone who's got an idea of how to track down something like this? I hoped I would be able to determine what was causing the slowdown using gDEBugger, however that just reconfirms that there aren't any other opengl calls, and doesn't really help figuring out what's taking up all the processing time.
Another note is that glDrawArraysInstanced also shows the same slowdown, and that splitting the call into 4 separate calls with a quarter of the geometry each also stops the slowdown.
Update
Here's an attempt at a minimal illustration of the problem.
//Minimal reproduction of problem
#include <stdio.h>
#include <string>
#include <fstream>
#include <stdlib.h>
#include <string.h>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
// Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <vector>
#include <iostream>
#include <stdio.h>
//Set to true to use instanced rendering (glDrawElementsInstanced), false to render a generated grid instead (glDrawElements)
#define Instanced true
//Translation from origin. Problme is pressent at 0 distance, but disapears at ex. 40.
const float distanceFromOrigin=0;
// Function to load shaders
GLuint LoadShaders(const char * vertex_file_path,const char * fragment_file_path);
int main(){
int width, height;
bool running = true;
// Initialise GLFW
glfwInit();
glfwWindowHint(GLFW_SAMPLES,1);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT,GL_TRUE);
glfwWindowHint(GLFW_VERSION_MAJOR, 4);
GLFWwindow* windowRef = glfwCreateWindow( 512, 512, "",0,0);
glfwMakeContextCurrent(windowRef);
glewInit();
//Load Shader
GLuint programID = LoadShaders( "Simple.vs.c", "Simple.fs.c" );
GLuint MatrixID = glGetUniformLocation(programID, "MVP");
glUseProgram(programID);
glm::mat4 Model,Projection,MVP,View,checkMVP;
std::vector<GLuint> sqIndice = {3,2,1,1,0,3,4,5,6,6,7,4,0,4,7,7,3,0,0,1,5,5,4,0,2,3,7,7,6,2,6,5,1,1,2,6,0,4,7,7,3,0};
std::vector<GLfloat> sqVertex = {-1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1};
std::vector<GLfloat> sqColor = {0.2472,0.24,0.6,0.6,0.24,0.442893,0.6,0.547014,0.24,0.24,0.6,0.33692,0.24,0.353173,0.6,0.6,0.24,0.563266,0.6,0.426641,0.24,0.263452,0.6,0.24};
const float lattice = 5;
const int mxn = 10;
std::vector<GLfloat> v1 = {lattice,-1,0};
std::vector<GLfloat> v2 = {1,lattice,0};
std::vector<GLfloat> v3 = {0,0,lattice};
std::vector<GLfloat> offset = {0,0,-distanceFromOrigin};
std::vector<GLfloat> latticePoints,sqVertexGrid,sqColorGrid;// = {0,0,0};
std::vector<GLuint> sqIndiceGrid;
// Looping stuff to generate the full grid of "instances" to render in a single call.
int instanceCount=0;
//Generate Lattice vectors, aswell as a vector containing the full grids of indices,vertexes and colors
for(int x=-mxn;x<mxn;++x){
for(int y=-mxn;y<mxn;++y){
for(int z=-mxn;z<mxn;++z){
for(int n=0;n<3;++n){
latticePoints.push_back( x*v1[n]+y*v2[n]+z*v3[n]+offset[n] );
};
for(int elm=0;elm<sqVertex.size();elm+=3){
for(int n=0;n<3;++n){
sqVertexGrid.push_back(sqVertex[elm+n]+x*v1[n]+y*v2[n]+z*v3[n]+offset[n]);
sqColorGrid.push_back(sqColor[elm+n]);
};
};
for(int elm=0;elm<sqIndice.size();++elm){
sqIndiceGrid.push_back(sqIndice[elm]+instanceCount*sqVertex.size()/3);
};
++instanceCount;glewInit
};
};
};
#if Instanced==true
//Initialize and fill vertex,color and indice buffers with the relevant data.
GLuint cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO);
glEnable(GL_DEPTH_TEST);
//Vertex buffer
GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, sqVertex.size()*sizeof(GLfloat), &sqVertex[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,0,(void*)0);
//Color buffer
GLuint colorBuffer;
glGenBuffers(1, &colorBuffer);
glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
glBufferData(GL_ARRAY_BUFFER, sqColor.size()*sizeof(GLfloat), &sqColor[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1,3,GL_FLOAT,GL_FALSE,0,(void*)0);
// Indice buffer
GLuint indicesBuffer;
glGenBuffers(1, &indicesBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indicesBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sqIndice.size()*sizeof(GLuint), &sqIndice[0], GL_STATIC_DRAW);
//Lattice point buffer
GLuint latticePointBuffer;
glGenBuffers(1, &latticePointBuffer);
glBindBuffer(GL_ARRAY_BUFFER, latticePointBuffer);
glBufferData(GL_ARRAY_BUFFER, latticePoints.size()*sizeof(GLfloat), &latticePoints[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(2);
glVertexAttribPointer(2,3,GL_FLOAT,GL_FALSE,0,(void*)0);
glVertexAttribDivisor(2,1);
glBindVertexArray(0);
#elif Instanced==false
GLuint cubeGridVAO;
glGenVertexArrays(1, &cubeGridVAO);
glBindVertexArray(cubeGridVAO);
glEnable(GL_DEPTH_TEST);
//Vertex buffer
GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, sqVertexGrid.size()*sizeof(GLfloat), &sqVertexGrid[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,0,(void*)0);
//Color buffer
GLuint colorBuffer;
glGenBuffers(1, &colorBuffer);
glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
glBufferData(GL_ARRAY_BUFFER, sqColorGrid.size()*sizeof(GLfloat), &sqColorGrid[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1,3,GL_FLOAT,GL_FALSE,0,(void*)0);
// Indice buffer
GLuint indicesBuffer;
glGenBuffers(1, &indicesBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indicesBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sqIndiceGrid.size()*sizeof(GLuint), &sqIndiceGrid[0], GL_STATIC_DRAW);
glBindVertexArray(0);
#endif
while(running)
{
glfwGetFramebufferSize(windowRef, &width, &height);
height = height > 0 ? height : 1;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
Projection = glm::perspective(65.0f, (float)(width)/height, 0.1f, 300.0f);
View = glm::lookAt( glm::vec3(0.0f,0.0f,-(distanceFromOrigin+3.8f)),
glm::vec3(0.0f,0.0f,100.0f),
glm::vec3(0.0f,1.0f,0.0f));
Model = glm::rotate(glm::mat4(1.0f), 0.0f, glm::vec3(0.25f, 1.0f,0.75f));
MVP = Projection*View*Model;
glUniformMatrix4fv(MatrixID, 1, GL_FALSE, glm::value_ptr(MVP));
#if Instanced==true
glBindVertexArray(cubeVAO);
glDrawElementsInstanced(GL_TRIANGLES, sqIndice.size(),GL_UNSIGNED_INT,(GLvoid*)(0),latticePoints.size());
#elif Instanced==false
glBindVertexArray(cubeGridVAO);
glDrawElements(GL_TRIANGLES, sqIndiceGrid.size(),GL_UNSIGNED_INT,(GLvoid*)(0));
#endif
glfwPollEvents();
glfwSwapBuffers(windowRef);
std::cout<<".\n";
running = !glfwGetKey(windowRef,GLFW_KEY_ESCAPE) && !glfwWindowShouldClose(windowRef);
}
glfwDestroyWindow(windowRef);
glfwTerminate();
return 0;
};
GLuint LoadShaders(const char * vertex_file_path,const char * fragment_file_path){
// Create the shaders
GLuint VertexShaderID = glCreateShader(GL_VERTEX_SHADER);
GLuint FragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER);
// Read the Vertex Shader code from the file
std::string VertexShaderCode;
std::ifstream VertexShaderStream(vertex_file_path, std::ios::in);
if(VertexShaderStream.is_open()){
std::string Line = "";
while(getline(VertexShaderStream, Line))
VertexShaderCode += "\n" + Line;
VertexShaderStream.close();
}else{
printf("Impossible to open %s. Are you in the right directory?\n", vertex_file_path);
return 0;
}
// Read the Fragment Shader code from the file
std::string FragmentShaderCode;
std::ifstream FragmentShaderStream(fragment_file_path, std::ios::in);
if(FragmentShaderStream.is_open()){
std::string Line = "";
while(getline(FragmentShaderStream, Line))
FragmentShaderCode += "\n" + Line;
FragmentShaderStream.close();
}
GLint Result = GL_FALSE;
int InfoLogLength;
// Compile Vertex Shader
printf("Compiling shader : %s\n", vertex_file_path);
char const * VertexSourcePointer = VertexShaderCode.c_str();
glShaderSource(VertexShaderID, 1, &VertexSourcePointer , NULL);
glCompileShader(VertexShaderID);
// Check Vertex Shader
glGetShaderiv(VertexShaderID, GL_COMPILE_STATUS, &Result);
glGetShaderiv(VertexShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
if ( InfoLogLength > 0 ){
std::vector<char> VertexShaderErrorMessage(InfoLogLength+1);
glGetShaderInfoLog(VertexShaderID, InfoLogLength, NULL, &VertexShaderErrorMessage[0]);
printf("%s\n", &VertexShaderErrorMessage[0]);
}
// Compile Fragment Shader
printf("Compiling shader : %s\n", fragment_file_path);
char const * FragmentSourcePointer = FragmentShaderCode.c_str();
glShaderSource(FragmentShaderID, 1, &FragmentSourcePointer , NULL);
glCompileShader(FragmentShaderID);
// Check Fragment Shader
glGetShaderiv(FragmentShaderID, GL_COMPILE_STATUS, &Result);
glGetShaderiv(FragmentShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
if ( InfoLogLength > 0 ){
std::vector<char> FragmentShaderErrorMessage(InfoLogLength+1);
glGetShaderInfoLog(FragmentShaderID, InfoLogLength, NULL, &FragmentShaderErrorMessage[0]);
printf("%s\n", &FragmentShaderErrorMessage[0]);
}
// Link the program
printf("Linking program\n");
GLuint ProgramID = glCreateProgram();
glAttachShader(ProgramID, VertexShaderID);
glAttachShader(ProgramID, FragmentShaderID);
glLinkProgram(ProgramID);
// Check the program
glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result);
glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength);
if ( InfoLogLength > 0 ){
std::vector<char> ProgramErrorMessage(InfoLogLength+1);
glGetProgramInfoLog(ProgramID, InfoLogLength, NULL, &ProgramErrorMessage[0]);
printf("%s\n", &ProgramErrorMessage[0]);
}
glDeleteShader(VertexShaderID);
glDeleteShader(FragmentShaderID);
return ProgramID;
}
Ok, take a deep breath and take a seat: your problem is graphic card memory speed.
But you could make it easier for the GPU by fixing this bug:
glDrawElementsInstanced(GL_TRIANGLES, sqIndice.size(),GL_UNSIGNED_INT,(GLvoid*)(0),latticePoints.size());
glDrawElementsInstanced expects the number of instances to draw as the last parameter. But you pass the number of elements in latticePoints. That's 3 times the number of instances. This results in a zero lettice point inside the shader (because of prevented out of bounds access). So 16000 cubes are not translated and are painted at the same position. This results in painting the front face of the cubes 16000 times. The depth buffer doesn't prevent this because the faces do not conceal each other, they are on the same spot.
So when your distanceFromOrigin decreases the 16000 center cubes get bigger and bigger. OpenGL has to draw more and more pixels. A lot more, to be exact. It has to draw so much that it hits the speed limit of the graphic card memory.
Read Diagnose OpenGl Performance Problems for the whole story.
My vertices are made up of an array with this structure:
[ Position ][ colour ]
[float][float][float][byte][byte][byte][byte]
Passing the vertex position is no problem:
gl.bindBuffer(gl.ARRAY_BUFFER, this.vbo);
gl.vertexAttribPointer(this.material.aVertexPosition, 3, gl.FLOAT, false, 4, 0);
But I can't figure out how I can pass the colours to the shader. Unfortunately, it's not possible to use integers inside the glsl shader so I have to use floats.
How can I get my unsigned byte colour value into the glsl float colour value? I tried it like this for r, g and b sepperately but the colours are all messed up:
gl.bindBuffer(gl.ARRAY_BUFFER, this.vbo);
gl.vertexAttribPointer(this.material.aR, 1, gl.BYTE, false, 15, 12);
Vertex Shader (colouredPoint.vs)
precision highp float;
attribute vec3 aVertexPosition;
attribute float aR;
attribute float aG;
attribute float aB;
uniform mat4 world;
uniform mat4 view;
uniform mat4 proj;
varying vec3 vVertexColour;
void main(void){
gl_PointSize = 4.0;
gl_Position = proj * view * world * vec4(aVertexPosition, 1.0);
vVertexColour = vec3(aR, aG, aB);
}
Pixel Shader (colouredPoint.fs)
precision highp float;
varying vec3 vVertexColour;
void main(void){
gl_FragColor = vec4(vVertexColour, 1);
}
gl.vertexAttribPointer(this.material.aVertexPosition, 3, gl.FLOAT, false, 4, 0);
gl.vertexAttribPointer(this.material.aR, 1, gl.BYTE, false, 15, 12);
Your stride should be 16, not 15 and certainly not 4.
Also, each individual color does not need to be a separate attribute. The four bytes can be a vec4 input. Oh, and your colors should be normalized, unsigned bytes. That is, the values on the range [0, 255] should be scaled to [0, 1] when the shader gets them. Therefore, what you want is:
gl.vertexAttribPointer(this.material.aVertexPosition, 3, gl.FLOAT, false, 16, 0);
gl.vertexAttribPointer(this.material.color, 4, gl.UNSIGNED_BYTE, true, 16, 12);
Oh, and attributes are not materials. You shouldn't call them that.
GLfloat red=(GLfloat)red/255;
I hope that's what you are looking for ^^
float pfIdentity[] =
{
-1.0f,0.0f,0.0f,0.0f,
0.0f,1.0f,0.0f,0.0f,
0.0f,0.0f,1.0f,0.0f,
0.0f,0.0f,0.0f,1.0f
};
==================================================================================
const char* pszVertShader = "\
attribute highp vec4 myVertex;\
uniform mediump mat4 myPMVMatrix;\
invariant gl_Position;\
void main(void)\
{\
gl_Position = myPMVMatrix * myVertex;\
}";
=====================================================================
for(int i = 0; i < 80000; ++i)
{
glClear(GL_COLOR_BUFFER_BIT);
int i32Location = glGetUniformLocation(uiProgramObject, "myPMVMatrix");
glUniformMatrix4fv( i32Location, 1, GL_FALSE, pfIdentity);
glEnableVertexAttribArray(VERTEX_ARRAY);
glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_TRIANGLES, 0,i);
eglSwapBuffers(eglDisplay, eglSurface);
}
return 0;
}
p.s : i am doing opengl-es in ubuntu 10.10 with kronos headers , its an emulator for opengl-es 2.0 in linux.
You don't have a projection at all. The Projection-Model-View matrix you're setting the myPMVMatrix uniform to is
float pfIdentity[] =
{
-1.0f,0.0f,0.0f,0.0f,
0.0f,1.0f,0.0f,0.0f,
0.0f,0.0f,1.0f,0.0f,
0.0f,0.0f,0.0f,1.0f
};
/* ... */
glUniformMatrix4fv( i32Location, 1, GL_FALSE, pfIdentity);
BTW: The idea of uniforms is, that you don't set them at each primitive iteration.
Anyway, this is a identity matrix, and since it's the only transformation applied it will just pass through the vertices as they are to the fragment stage. The solution for your problem is applying a orthographic projection to it, i.e. multiply that matrix with a ortho projection matrix and use the result of that operation instead. http://www.songho.ca/opengl/gl_projectionmatrix.html