How to maintain cache in ClickHouse? - caching

I use crontab to schedule a SQL that queries a big table every 2 hours.
select a,b,c,d,e,f,g,h,i,j,k,many_cols from big_table format Null
It takes anywhere from 5 minutes to 30 seconds at a time.
What I can see from the query_log is that when the SQL time is low, the MarkCacheHits value is high, when the time is high, the MarkCacheHits value is low, and the MarkCacheMiss value is high.
And I'm wondering how to make mark cache hit as many as possible? (This is probably not the only big table that needs to be warmed up)
Will mark cache be replaced by other queries and what is its limit?
Does the warm-up way of selecting specific columns really work for an aggregate query of those columns? For example, warm-up SQL is as above, and the aggregate query can be select a,sum(if(b,c,0)) from big_table group by a
My clickhouse server has been hanging occasionally recently, and I can't see any errors or exceptions at the corresponding time from the log. Could this be related to my regular warm-up query of the big table?

In reality you placing data into Linux disk cache.
Will mark cache be replaced by other queries and what is its limit?
yes, will be replaced, 5GB <mark_cache_size>5368709120</mark_cache_size>
Does the warm-up way of selecting specific columns really work for an aggregate query of those columns?
Yes because you put files into Linux cache.
Could this be related to my regular warm-up query of the big table?
No.

Related

Speed up SQLite 'SELECT EXISTS' query

I've got a 3GB SQLite database file with a single table with 40 million rows and 14 fields (mostly integers and very short strings and one longer string), no indexes or keys or other constraints -- so really nothing fancy. I want to check if there are entries where a specific integer field has a specific value. So of course I'm using
SELECT EXISTS(SELECT 1 FROM FooTable WHERE barField=?)
I haven't got much experience with SQLite and databases in general and on my first test query, I was shocked that this simple query took about 30 seconds. Subsequent tests showed that it is much faster if a matching row occurs at the beginning, which of course makes sense.
Now I'm thinking of doing an initial SELECT DISTINCT barField FROM FooTable at application startup, and caching the results in software. But I'm sure there must be a cleaner SQLite way to do this, I mean, that should be part of what a DBMS's job right?
But so far, I've only created primary keys for speeding up queries, which doesn't work here because the field values are non-unique. So how can I speed up this query so that it works at constant time? (It doesn't have to be lightning fast, I'd be completely fine if it was under one second.)
Thanks in advance for answering!
P.S. Oh, and there will be about 500K new rows every month for an indefinite period of time, and it would be great if that doesn't significantly increase query time.
Adding an index on barField should speed up the subquery inside the EXISTS clause:
CREATE INDEX barIdx ON FooTable (barField);
To satisfy the query, SQLite would only have to seek the index once and detect that there is at least one matching value.

Does the number of columns in a Vertica table impact query performance?

We are working with a Vertica 8.1 table containing 500 columns and 100 000 rows.
The following query will take around 1.5 seconds to execute, even when using the vsql client straight on one of the Vertica cluster nodes (to eliminate any network latency issue) :
SELECT COUNT(*) FROM MY_TABLE WHERE COL_132 IS NOT NULL and COL_26 = 'anotherValue'
But when checking the query_requests table, the request_duration_ms is only 98 ms, and the resource_acquisitions table doesn't indicate any delay in resource asquisition. I can't understand where the rest of the time is spent.
If I then export to a new table only the columns used by the query, and run the query on this new, smaller, table, I get a blazing fast response, even though the query_requests table still tells me the request_duration_ms is around 98 ms.
So it seems that the number of columns in the table impacts the execution time of queries, even if most of these columns are not referenced. Am I wrong ? If so, why is it so ?
Thanks by advance
It sounds like your query is running against the (default) superprojection that includes all tables. Even though Vertica is a columnar database (with associated compression and encoding), your query is probably still touching more data than it needs to.
You can create projections to optimize your queries. A projection contains a subset of columns; if one is available that has all the columns your query needs, then the query uses that instead of the superprojection. (It's a little more complicated than that, because physical location is also a factor, but that's the basic idea.) You can use the Database Designer to create some initial projections based on your schema and sample queries, and iteratively improve it over time.
I was running Vertica 8.1.0-1, it seems the issue was a Vertica bug in the Vertica planning phase causing a performance degradation. It was solved in versions >= 8.1.1 :
[https://my.vertica.com/docs/ReleaseNotes/8.1.x/Vertica_8.1.x_Release_Notes.htm]
VER-53602 - Optimizer - This fix improves complex query performance during the query planning phase.

Execute Select Statement at Cassandra

I have been a problem in Cassandra. Please help me..
I am executing Select statement at 500K rows table at intervals 1 millisecond. After some time I get message "All host(s) tried for query failed. First host tried, 10.1.60.12:9042: Host considered as DOWN. See innerErrors".
I run select statement the fallowing:
select * from demo.users
this returning to me 5K rows. There are 500K rows in the users table.
I don't know what is wrong. I have not changed the cassandra.yaml file.
I need to make settings for the memory cache? There is too much disk i/o when I run select statement.
Please help me
A range query (select * with no primary key or token ranges) can be a very expensive query that has to hit at least 1 of every replica set (depend on size of dataset). If your trying to read the entire dataset or doing batch processing either be best to use spark connector or behave like it, and query individual token ranges to prevent putting too much load on coordinators.
If you are going to be using inefficient queries (which is fine, just don't expect the same throughput as normal reads) you will probably need more resources or some specialized tuning. You could add more nodes or look into whats causing it to go DOWN. Most likely its GCs from heap load, so can check GC log. If you have the memory available you can increase heap. Would be good idea to max heap size since with reading everything, system caches are not going to be as meaningful. Use G1 once over 16gb (which you should be) in the jvm.options.

What will happen when inserting a row during a long running query

I am writing some data loading code that pulls data from a large, slow table in an oracle database. I have read-only access to the data, and do not have the ability to change indexes or affect the speed of the query in any way.
My select statement takes 5 minutes to execute and returns around 300,000 rows. The system is inserting large batches of new records constantly, and I need to make sure I get every last one, so I need to save a timestamp for the last time I downloaded the data.
My question is: If my select statement is running for 5 minutes, and new rows get inserted while the select is running, will I receive the new rows or not in the query result?
My gut tells me that the answer is 'no', especially since a large portion of those 5 minutes is just the time spent on the data transfer from the database to the local environment, but I can't find any direct documentation on the scenario.
"If my select statement is running for 5 minutes, and new rows get inserted while the select is running, will I receive the new rows or not in the query result?"
No. Oracle enforces strict isolation levels and does not permit dirty reads.
The default isolation level is Read Committed. This means the result set you get after five minutes will be identical to the one you would have got if Oracle could have delivered you all the records in 0.0000001 seconds. Anything committed after you query started running will not be included in the results. That includes updates to the records as well as inserts.
Oracle does this by tracking changes to the table in the UNDO tablespace. Provided it can restrict the original image from that data your query will run to completion; if for any reason the undo information is overwritten your query will fail with the dreaded ORA-1555: Snapshot too old. That's right: Oracle would rather hurl an exception than provide us with an inconsistent result set.
Note that this consistency applies at the statement level. If we run the same query twice within the one transaction we may see two different results sets. If that is a problem (I think not in your case) we need to switch from Read Committed to Serialized isolation.
The Concepts Manual covers Concurrency and Consistency in great depth. Find out more.
So to answer your question, take the timestamp from the time you start the select. Specifically, take the max(created_ts) from the table before you kick off the query. This should protect you from the gap Alex mentions (if records are not committed the moment they are inserted there is the potential to lose records if you base the select on comparing with the system timestamp). Although doing this means you're issuing two queries in the same transaction which means you do need Serialized isolation after all!

(TSQL) INSERT doubling time of the query

I have a quite complex multi-join TSQL SELECT query that runs for about 8 seconds and returns about 300K records. Which is currently acceptable. But I need to reuse results of that query several times later, so I am inserting results of the query into a temp table. Table is created in advance with columns that match output of SELECT query. But as soon as I do INSERT INTO ... SELECT - execution time more than doubles to over 20 seconds! Execution plans shows that 46% of the query cost goes to "Table Insert" and 38% to Table Spool (Eager Spool).
Any idea why this is happening and how to speed it up?
Thanks!
The "Why" of it hard to say, we'd need a lot more information. (though my SWAG would be that it has to do with logging...)
However, the solution, 9 times out of 10 is to use SELECT INTO to make your temp table.
I would start by looking at standard tuning itmes. Is disk performing? Are there sufficient resources (IOs, RAM, CPU, etc)? Is there a bottleneck in the RDBMS? Does sound like the issue but what is happening with locking? Does other code give similar results? Is other code performant?
A few things I can suggest based on the information you have provided. If you don't care about dirty reads, you could always change the transaction isolation level (if you're using MS T-SQL)
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
select ...
This may speed things up on your initial query as locks will not need to be done on the data you are querying from. If you're not using SQL server, do a google search for how to do the same thing with the technology you are using.
For the insert portion, you said you are inserting into a temp table. Does your database support adding primary keys or indexes on your temp table? If it does, have a dummy column in there that is an indexed column. Also, have you tried to use a regular database table with this? Depending on your set up, it is possible that using that will speed up your insert times.

Resources