I am trying to extract the OEE trend of a manufacturing machine. I already have a dataset of OEE calculated more or less every 30 seconds for each manufacturing machine and stored in a database.
What I want to do is to extract a subset of the dataset (say, last 30 minutes) and state if the OEE has grown, decreased or has been stable (withing a certain threshold). My task is NOT to forecast what will be the next value of OEE, but just to know if has decreased (desired return value: -1), grown (desired return value: +1) or been stable (desired return value: 0) based on the dataset. I am using Java 8 in my project.
Here is an example of dataset:
71.37
71.37
70.91
70.30
70.30
70.42
70.42
69.77
69.77
69.29
68.92
68.92
68.61
68.61
68.91
68.91
68.50
68.71
69.27
69.26
69.89
69.85
69.98
69.93
69.39
68.97
69.03
From this dataset is possible to state that the OEE has been decreasing (of couse based on a threshold), thus the algorithm would return -1.
I have been searching on the web unsuccessfully. I have found this, or this github project, or this stackoverflow question. However, all those are (more or less) complex forecasting algorithm. I am searching for a much easier solution. Any help is apreciated.
You could go for a
sliding average of the last n values.
Or a
sliding median of the last n values.
It highly depends on your application what is appropriate. But both these are very simple to implement and in a lot of cases more than good enough.
As you know from math, one would use d/dt, which more or less is using the step differences.
A trend is should have some weight.
class Trend {
int direction;
double probability;
}
Trend trend(double[] lastData) {
double[] deltas = Arrays.copyOf(lastData, lastData.length - 1);
for (int i = 0; i < deltas.length; ++i) {
deltas[i] -= lastData[i + 1];
}
// Trend based on two parts:
int parts = 2;
int splitN = (deltas.length + 1) / parts;
int i = 0;
int[] trends = new int[parts];
for (int j = 0; j < parts.length; ++j) {
int n = Math.min(splitN, parts.length - i);
double partAvg = DoubleStream.of(deltas).skip(i).limit(n).sum() / n;
trends[j] = tendency(partAvg);
}
Trend result = new Trend();
trend.direction = trends[parts - 1];
double avg = IntStream.of(trends).average().orElse((double)trend.direction);
trend.probability = ((direction - avg) + 1) / 2;
return trends[parts - 1];
}
int tendency(double sum) {
final double EPS = 0.0001;
return sum < -EPS ? -1 : sum > EPS ? 1 : 0;
}
This is not very sophisticated. For more elaborate treatment a math forum might be useful.
Weights of n men and their strengths (max weight they can carry) are given. Height of all are same and given. Find the maximum height they can make by standing on each other?
That means, you have to place them by taking maximum number of men from them, such that no men is carrying weight more than his strength.
This question is bugging me. First I thought using greedy, by taking person of maximum strength first, but it is not giving correct answer. Then I tried to solve it, like knapsack, which is also not right. I am not able to come up with an efficient algorithm. Can anyone help?
First of all sorry by my english :)
Here is one way that you can think as a way to solve the problem.
Ok if you can supposed that each floor absorbs the whole weight in a uniform form, ( I mean there are no restriction like "one man can carry only the weight of two mens" or somethin like that..).
We will start with an hypothetical structure which has one man for each floor, and with that structure we will start to check the restrictions and arrange people.
We will check the lowest floor (first floor), and we will ask: Can this floor handle the weight of all the higher floors?
If the answer is no, we remove one men from the top of the tower and we add it to this floor, and we check again the weight condition on this floor.
If the answer is yes, we pass to check the next floor.
After that we will have an structure which meet the requirements.
And the C# code:
int amountOfMens = n;
float weight = w;
float strength = s;
float height = h;
int []mensInEachFloor;
public void MyAlg()
{
mensInEachFloor = new int[ amountOfMens ]; // the max height that we can achieve is the max amount of mens.
for(int i=0; i < mensInEachFloor.Length; i++ )
{
// we put one men on each floor, just to check if the highest heigth is achivable
mensInEachFloor[i] = 1;
}
// now we start to use our algorithm
// for each floor:
for(int i = 0; i < mensInEachFloor.Length; i++ )
{
// for each floor we will work on it until supports its designed weight
bool floorOk = false;
while(! floorOk)
{
// we check if the weigth of all the higher floors can be supported by this level
float weightToBeSupported = TotalWeightOfHigherFloors(i+1);
float weightThatCanBeSupported = WeightHandledByFloor(i);
if( weightToBeSupported > weightThatCanBeSupported )
{
// Remove one men from the top
RemoveOneManFromHighestFloor();
// add one men to this floor to help with the weight
AddOneManToFloor(i);
}
else
{
// we are ok on this floor :)
floorOk = true;
}
}
}
Debug.Log("The total heigth of the tower is : " + GetTowerHeight() );
}
private float TotalWeightOfHigherFloors(int startingFloor)
{
float totalWeight = 0;
for(int i= startingFloor; i< mensInEachFloor.Length; i++ )
{
totalWeight += mensInEachFloor[i] * weight;
}
return totalWeight;
}
private float WeightHandledByFloor(int floor)
{
return mensInEachFloor[floor] * strength;
}
private void RemoveOneManFromHighestFloor()
{
// we start to see from the top..
for(int i = mensInEachFloor.Length - 1 ; i >= 0; i-- )
{
// if on this floor are one or more mens..
if(mensInEachFloor[i] != 0)
{
// we remove from the floor
mensInEachFloor[i] = mensInEachFloor[i] - 1;
// and we are done
break;
}
}
}
private void AddOneManToFloor(int floor)
{
// Add one man to the selected floor
mensInEachFloor[floor] = mensInEachFloor[floor] + 1;
}
private float GetTowerHeight()
{
// We will count the number of floors with mens on it
float amountOfFloors = 0;
for(int i= 0; i< mensInEachFloor.Length; i++ )
{
// If there are more than zero mens
if( mensInEachFloor[i] > 0 )
{
// it means that it is a valid floor
amountOfFloors++;
}
}
// number of floors times height
return amountOfFloors * height;
}
Cheers !
Summary:
Any ideas about how to further improve upon the basic scatter operation in CUDA? Especially if one knows it will only be used to compact a larger array into a smaller one? or why the below methods of vectorizing memory ops and shared memory didn't work? I feel like there may be something fundamental I am missing and any help would be appreciated.
EDIT 03/09/15: So I found this Parallel For All Blog post "Optimized Filtering with Warp-Aggregated Atomics". I had assumed atomics would be intrinsically slower for this purpose, however I was wrong - especially since I don't think I care about maintaining element order in the array during my simulation. I'll have to think about it some more and then implement it to see what happens!
EDIT 01/04/16: I realized I never wrote about my results. Unfortunately in that Parallel for All Blog post they compared the global atomic method for compact to the Thrust prefix-sum compact method, which is actually quite slow. CUB's Device::IF is much faster than Thrust's - as is the prefix-sum version I wrote using CUB's Device::Scan + custom code. The warp-aggregrate global atomic method is still faster by about 5-10%, but nowhere near the 3-4x faster I had been hoping for based on the results in the blog. I'm still using the prefix-sum method as while maintaining element order is not necessary, I prefer the consistency of the prefix-sum results and the advantage from the atomics is not very big. I still try various methods to improve compact, but so far only marginal improvements (2%) at best for dramatically increased code complexity.
Details:
I am writing a simulation in CUDA where I compact out elements I am no longer interested in simulating every 40-60 time steps. From profiling it seems that the scatter op takes up the most amount of time when compacting - more so than the filter kernel or the prefix sum. Right now I use a pretty basic scatter function:
__global__ void scatter_arrays(float * new_freq, const float * const freq, const int * const flag, const int * const scan_Index, const int freq_Index){
int myID = blockIdx.x*blockDim.x + threadIdx.x;
for(int id = myID; id < freq_Index; id+= blockDim.x*gridDim.x){
if(flag[id]){
new_freq[scan_Index[id]] = freq[id];
}
}
}
freq_Index is the number of elements in the old array. The flag array is the result from the filter. Scan_ID is the result from the prefix sum on the flag array.
Attempts I've made to improve it are to read the flagged frequencies into shared memory first and then write from shared memory to global memory - the idea being that the writes to global memory would be more coalesced amongst the warps (e.g. instead of thread 0 writing to position 0 and thread 128 writing to position 1, thread 0 would write to 0 and thread 1 would write to 1). I also tried vectorizing the reads and the writes - instead of reading and writing floats/ints I read/wrote float4/int4 from the global arrays when possible, so four numbers at a time. This I thought might speed up the scatter by having fewer memory ops transferring larger amounts of memory. The "kitchen sink" code with both vectorized memory loads/stores and shared memory is below:
const int compact_threads = 256;
__global__ void scatter_arrays2(float * new_freq, const float * const freq, const int * const flag, const int * const scan_Index, const int freq_Index){
int gID = blockIdx.x*blockDim.x + threadIdx.x; //global ID
int tID = threadIdx.x; //thread ID within block
__shared__ float row[4*compact_threads];
__shared__ int start_index[1];
__shared__ int end_index[1];
float4 myResult;
int st_index;
int4 myFlag;
int4 index;
for(int id = gID; id < freq_Index/4; id+= blockDim.x*gridDim.x){
if(tID == 0){
index = reinterpret_cast<const int4*>(scan_Index)[id];
myFlag = reinterpret_cast<const int4*>(flag)[id];
start_index[0] = index.x;
st_index = index.x;
myResult = reinterpret_cast<const float4*>(freq)[id];
if(myFlag.x){ row[0] = myResult.x; }
if(myFlag.y){ row[index.y-st_index] = myResult.y; }
if(myFlag.z){ row[index.z-st_index] = myResult.z; }
if(myFlag.w){ row[index.w-st_index] = myResult.w; }
}
__syncthreads();
if(tID > 0){
myFlag = reinterpret_cast<const int4*>(flag)[id];
st_index = start_index[0];
index = reinterpret_cast<const int4*>(scan_Index)[id];
myResult = reinterpret_cast<const float4*>(freq)[id];
if(myFlag.x){ row[index.x-st_index] = myResult.x; }
if(myFlag.y){ row[index.y-st_index] = myResult.y; }
if(myFlag.z){ row[index.z-st_index] = myResult.z; }
if(myFlag.w){ row[index.w-st_index] = myResult.w; }
if(tID == blockDim.x -1 || gID == mutations_Index/4 - 1){ end_index[0] = index.w + myFlag.w; }
}
__syncthreads();
int count = end_index[0] - st_index;
int rem = st_index & 0x3; //equivalent to modulo 4
int offset = 0;
if(rem){ offset = 4 - rem; }
if(tID < offset && tID < count){
new_mutations_freq[population*new_array_Length+st_index+tID] = row[tID];
}
int tempID = 4*tID+offset;
if((tempID+3) < count){
reinterpret_cast<float4*>(new_freq)[tID] = make_float4(row[tempID],row[tempID+1],row[tempID+2],row[tempID+3]);
}
tempID = tID + offset + (count-offset)/4*4;
if(tempID < count){ new_freq[st_index+tempID] = row[tempID]; }
}
int id = gID + freq_Index/4 * 4;
if(id < freq_Index){
if(flag[id]){
new_freq[scan_Index[id]] = freq[id];
}
}
}
Obviously it gets a bit more complicated. :) While the above kernel seems stable when there are hundreds of thousands of elements in the array, I've noticed a race condition when the array numbers in the tens of millions. I'm still trying to track the bug down.
But regardless, neither method (shared memory or vectorization) together or alone improved performance. I was especially surprised by the lack of benefit from vectorizing the memory ops. It had helped in other functions I had written, though now I am wondering if maybe it helped because it increased Instruction-Level-Parallelism in the calculation steps of those other functions rather than the fewer memory ops.
I found the algorithm mentioned in this poster (similar algorithm also discussed in this paper) works pretty well, especially for compacting large arrays. It uses less memory to do it and is slightly faster than my previous method (5-10%). I put in a few tweaks to the poster's algorithm: 1) eliminating the final warp shuffle reduction in phase 1, can simply sum the elements as they are calculated, 2) giving the function the ability to work over more than just arrays sized as a multiple of 1024 + adding grid-strided loops, and 3) allowing each thread to load their registers simultaneously in phase 3 instead of one at a time. I also use CUB instead of Thrust for Inclusive sum for faster scans. There may be more tweaks I can make, but for now this is good.
//kernel phase 1
int myID = blockIdx.x*blockDim.x + threadIdx.x;
//padded_length is nearest multiple of 1024 > true_length
for(int id = myID; id < (padded_length >> 5); id+= blockDim.x*gridDim.x){
int lnID = threadIdx.x % warp_size;
int warpID = id >> 5;
unsigned int mask;
unsigned int cnt=0;//;//
for(int j = 0; j < 32; j++){
int index = (warpID<<10)+(j<<5)+lnID;
bool pred;
if(index > true_length) pred = false;
else pred = predicate(input[index]);
mask = __ballot(pred);
if(lnID == 0) {
flag[(warpID<<5)+j] = mask;
cnt += __popc(mask);
}
}
if(lnID == 0) counter[warpID] = cnt; //store sum
}
//kernel phase 2 -> CUB Inclusive sum transforms counter array to scan_Index array
//kernel phase 3
int myID = blockIdx.x*blockDim.x + threadIdx.x;
for(int id = myID; id < (padded_length >> 5); id+= blockDim.x*gridDim.x){
int lnID = threadIdx.x % warp_size;
int warpID = id >> 5;
unsigned int predmask;
unsigned int cnt;
predmask = flag[(warpID<<5)+lnID];
cnt = __popc(predmask);
//parallel prefix sum
#pragma unroll
for(int offset = 1; offset < 32; offset<<=1){
unsigned int n = __shfl_up(cnt, offset);
if(lnID >= offset) cnt += n;
}
unsigned int global_index = 0;
if(warpID > 0) global_index = scan_Index[warpID - 1];
for(int i = 0; i < 32; i++){
unsigned int mask = __shfl(predmask, i); //broadcast from thread i
unsigned int sub_group_index = 0;
if(i > 0) sub_group_index = __shfl(cnt, i-1);
if(mask & (1 << lnID)){
compacted_array[global_index + sub_group_index + __popc(mask & ((1 << lnID) - 1))] = input[(warpID<<10)+(i<<5)+lnID];
}
}
}
}
EDIT: There is a newer article by a subset of the poster authors where they examine a faster variation of compact than what is written above. However, their new version is not order preserving, so not useful for myself and I haven't implemented it to test it out. That said, if your project doesn't rely on object order, their newer compact version can probably speed up your algorithm.
I need a data structure for storing float values at an uniformly sampled 3D mesh:
x = x0 + ix*dx where 0 <= ix < nx
y = y0 + iy*dy where 0 <= iy < ny
z = z0 + iz*dz where 0 <= iz < nz
Up to now I have used my Array class:
Array3D<float> A(nx, ny,nz);
A(0,0,0) = 0.0f; // ix = iy = iz = 0
Internally it stores the float values as an 1D array with nx * ny * nz elements.
However now I need to represent an mesh with more values than I have RAM,
e.g. nx = ny = nz = 2000.
I think many neighbour nodes in such an mesh may have similar values so I was thinking if there was some simple way that I could "coarsen" the mesh adaptively.
For instance if the 8 (ix,iy,iz) nodes of an cell in this mesh have values that are less than 5% apart; they are "removed" and replaced by just one value; the mean of the 8 values.
How could I implement such a data structure in a simple and efficient way?
EDIT:
thanks Ante for suggesting lossy compression. I think this could work the following way:
#define BLOCK_SIZE 64
struct CompressedArray3D {
CompressedArray3D(int ni, int nj, int nk) {
NI = ni/BLOCK_SIZE + 1;
NJ = nj/BLOCK_SIZE + 1;
NK = nk/BLOCK_SIZE + 1;
blocks = new float*[NI*NJ*NK];
compressedSize = new unsigned int[NI*NJ*NK];
}
void setBlock(int I, int J, int K, float values[BLOCK_SIZE][BLOCK_SIZE][BLOCK_SIZE]) {
unsigned int csize;
blocks[I*NJ*NK + J*NK + K] = compress(values, csize);
compressedSize[I*NJ*NK + J*NK + K] = csize;
}
float getValue(int i, int j, int k) {
int I = i/BLOCK_SIZE;
int J = j/BLOCK_SIZE;
int K = k/BLOCK_SIZE;
int ii = i - I*BLOCK_SIZE;
int jj = j - J*BLOCK_SIZE;
int kk = k - K*BLOCK_SIZE;
float *compressedBlock = blocks[I*NJ*NK + J*NK + K];
unsigned int csize = compressedSize[I*NJ*NK + J*NK + K];
float values[BLOCK_SIZE][BLOCK_SIZE][BLOCK_SIZE];
decompress(compressedBlock, csize, values);
return values[ii][jj][kk];
}
// number of blocks:
int NI, NJ, NK;
// number of samples:
int ni, nj, nk;
float** blocks;
unsigned int* compressedSize;
};
For this to be useful I need a lossy compression that is:
extremely fast, also on small datasets (e.g. 64x64x64)
compress quite hard > 3x, never mind if it looses quite a bit of info.
Any good candidates?
It sounds like you're looking for a LOD (level of detail) adaptive mesh. It's a recurring theme in video games and terrain simulation.
For terrain, see here: http://vterrain.org/LOD/Papers/ -- look for the ROAM video which is IIRC not only adaptive by distance, but also by view direction.
For non-terrain entities, there is a huge body of work (here's one example: Generic Adaptive Mesh Refinement).
I would suggest to use OctoMap to handle large 3D data.
And to extend it as shown here to handle geometrical properties.
Does anybody know how to find the local maxima in a grayscale IPL_DEPTH_8U image using OpenCV? HarrisCorner mentions something like that but I'm actually not interested in corners ...
Thanks!
A pixel is considered a local maximum if it is equal to the maximum value in a 'local' neighborhood. The function below captures this property in two lines of code.
To deal with pixels on 'plateaus' (value equal to their neighborhood) one can use the local minimum property, since plateaus pixels are equal to their local minimum. The rest of the code filters out those pixels.
void non_maxima_suppression(const cv::Mat& image, cv::Mat& mask, bool remove_plateaus) {
// find pixels that are equal to the local neighborhood not maximum (including 'plateaus')
cv::dilate(image, mask, cv::Mat());
cv::compare(image, mask, mask, cv::CMP_GE);
// optionally filter out pixels that are equal to the local minimum ('plateaus')
if (remove_plateaus) {
cv::Mat non_plateau_mask;
cv::erode(image, non_plateau_mask, cv::Mat());
cv::compare(image, non_plateau_mask, non_plateau_mask, cv::CMP_GT);
cv::bitwise_and(mask, non_plateau_mask, mask);
}
}
Here's a simple trick. The idea is to dilate with a kernel that contains a hole in the center. After the dilate operation, each pixel is replaced with the maximum of it's neighbors (using a 5 by 5 neighborhood in this example), excluding the original pixel.
Mat1b kernelLM(Size(5, 5), 1u);
kernelLM.at<uchar>(2, 2) = 0u;
Mat imageLM;
dilate(image, imageLM, kernelLM);
Mat1b localMaxima = (image > imageLM);
Actually after I posted the code above I wrote a better and very very faster one ..
The code above suffers even for a 640x480 picture..
I optimized it and now it is very very fast even for 1600x1200 pic.
Here is the code :
void localMaxima(cv::Mat src,cv::Mat &dst,int squareSize)
{
if (squareSize==0)
{
dst = src.clone();
return;
}
Mat m0;
dst = src.clone();
Point maxLoc(0,0);
//1.Be sure to have at least 3x3 for at least looking at 1 pixel close neighbours
// Also the window must be <odd>x<odd>
SANITYCHECK(squareSize,3,1);
int sqrCenter = (squareSize-1)/2;
//2.Create the localWindow mask to get things done faster
// When we find a local maxima we will multiply the subwindow with this MASK
// So that we will not search for those 0 values again and again
Mat localWindowMask = Mat::zeros(Size(squareSize,squareSize),CV_8U);//boolean
localWindowMask.at<unsigned char>(sqrCenter,sqrCenter)=1;
//3.Find the threshold value to threshold the image
//this function here returns the peak of histogram of picture
//the picture is a thresholded picture it will have a lot of zero values in it
//so that the second boolean variable says :
// (boolean) ? "return peak even if it is at 0" : "return peak discarding 0"
int thrshld = maxUsedValInHistogramData(dst,false);
threshold(dst,m0,thrshld,1,THRESH_BINARY);
//4.Now delete all thresholded values from picture
dst = dst.mul(m0);
//put the src in the middle of the big array
for (int row=sqrCenter;row<dst.size().height-sqrCenter;row++)
for (int col=sqrCenter;col<dst.size().width-sqrCenter;col++)
{
//1.if the value is zero it can not be a local maxima
if (dst.at<unsigned char>(row,col)==0)
continue;
//2.the value at (row,col) is not 0 so it can be a local maxima point
m0 = dst.colRange(col-sqrCenter,col+sqrCenter+1).rowRange(row-sqrCenter,row+sqrCenter+1);
minMaxLoc(m0,NULL,NULL,NULL,&maxLoc);
//if the maximum location of this subWindow is at center
//it means we found the local maxima
//so we should delete the surrounding values which lies in the subWindow area
//hence we will not try to find if a point is at localMaxima when already found a neighbour was
if ((maxLoc.x==sqrCenter)&&(maxLoc.y==sqrCenter))
{
m0 = m0.mul(localWindowMask);
//we can skip the values that we already made 0 by the above function
col+=sqrCenter;
}
}
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
The first question to answer would be what is "local" in your opinion. The answer may well be a square window (say 3x3 or 5x5) or circular window of a certain radius. You can then scan over the entire image with the window centered at each pixel and pick the highest value in the window.
See this for how to access pixel values in OpenCV.
This is very fast method. It stored founded maxima in a vector of
Points.
vector <Point> GetLocalMaxima(const cv::Mat Src,int MatchingSize, int Threshold, int GaussKernel )
{
vector <Point> vMaxLoc(0);
if ((MatchingSize % 2 == 0) || (GaussKernel % 2 == 0)) // MatchingSize and GaussKernel have to be "odd" and > 0
{
return vMaxLoc;
}
vMaxLoc.reserve(100); // Reserve place for fast access
Mat ProcessImg = Src.clone();
int W = Src.cols;
int H = Src.rows;
int SearchWidth = W - MatchingSize;
int SearchHeight = H - MatchingSize;
int MatchingSquareCenter = MatchingSize/2;
if(GaussKernel > 1) // If You need a smoothing
{
GaussianBlur(ProcessImg,ProcessImg,Size(GaussKernel,GaussKernel),0,0,4);
}
uchar* pProcess = (uchar *) ProcessImg.data; // The pointer to image Data
int Shift = MatchingSquareCenter * ( W + 1);
int k = 0;
for(int y=0; y < SearchHeight; ++y)
{
int m = k + Shift;
for(int x=0;x < SearchWidth ; ++x)
{
if (pProcess[m++] >= Threshold)
{
Point LocMax;
Mat mROI(ProcessImg, Rect(x,y,MatchingSize,MatchingSize));
minMaxLoc(mROI,NULL,NULL,NULL,&LocMax);
if (LocMax.x == MatchingSquareCenter && LocMax.y == MatchingSquareCenter)
{
vMaxLoc.push_back(Point( x+LocMax.x,y + LocMax.y ));
// imshow("W1",mROI);cvWaitKey(0); //For gebug
}
}
}
k += W;
}
return vMaxLoc;
}
Found a simple solution.
In this example, if you are trying to find 2 results of a matchTemplate function with a minimum distance from each other.
cv::Mat result;
matchTemplate(search, target, result, CV_TM_SQDIFF_NORMED);
float score1;
cv::Point displacement1 = MinMax(result, score1);
cv::circle(result, cv::Point(displacement1.x+result.cols/2 , displacement1.y+result.rows/2), 10, cv::Scalar(0), CV_FILLED, 8, 0);
float score2;
cv::Point displacement2 = MinMax(result, score2);
where
cv::Point MinMax(cv::Mat &result, float &score)
{
double minVal, maxVal;
cv::Point minLoc, maxLoc, matchLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
matchLoc.x = minLoc.x - result.cols/2;
matchLoc.y = minLoc.y - result.rows/2;
return minVal;
}
The process is:
Find global Minimum using minMaxLoc
Draw a filled white circle around global minimum using min distance between minima as radius
Find another minimum
The the scores can be compared to each other to determine, for example, the certainty of the match,
To find more than just the global minimum and maximum try using this function from skimage:
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
You can parameterize the minimum distance between peaks, too. And more. To find minima, use negated values (take care of the array type though, 255-image could do the trick).
You can go over each pixel and test if it is a local maxima. Here is how I would do it.
The input is assumed to be type CV_32FC1
#include <vector>//std::vector
#include <algorithm>//std::sort
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
//structure for maximal values including position
struct SRegionalMaxPoint
{
SRegionalMaxPoint():
values(-FLT_MAX),
row(-1),
col(-1)
{}
float values;
int row;
int col;
//ascending order
bool operator()(const SRegionalMaxPoint& a, const SRegionalMaxPoint& b)
{
return a.values < b.values;
}
};
//checks if pixel is local max
bool isRegionalMax(const float* im_ptr, const int& cols )
{
float center = *im_ptr;
bool is_regional_max = true;
im_ptr -= (cols + 1);
for (int ii = 0; ii < 3; ++ii, im_ptr+= (cols-3))
{
for (int jj = 0; jj < 3; ++jj, im_ptr++)
{
if (ii != 1 || jj != 1)
{
is_regional_max &= (center > *im_ptr);
}
}
}
return is_regional_max;
}
void imregionalmax(
const cv::Mat& input,
std::vector<SRegionalMaxPoint>& buffer)
{
//find local max - top maxima
static const int margin = 1;
const int rows = input.rows;
const int cols = input.cols;
for (int i = margin; i < rows - margin; ++i)
{
const float* im_ptr = input.ptr<float>(i, margin);
for (int j = margin; j < cols - margin; ++j, im_ptr++)
{
//Check if pixel is local maximum
if ( isRegionalMax(im_ptr, cols ) )
{
cv::Rect roi = cv::Rect(j - margin, i - margin, 3, 3);
cv::Mat subMat = input(roi);
float val = *im_ptr;
//replace smallest value in buffer
if ( val > buffer[0].values )
{
buffer[0].values = val;
buffer[0].row = i;
buffer[0].col = j;
std::sort(buffer.begin(), buffer.end(), SRegionalMaxPoint());
}
}
}
}
}
For testing the code you can try this:
cv::Mat temp = cv::Mat::zeros(15, 15, CV_32FC1);
temp.at<float>(7, 7) = 1;
temp.at<float>(3, 5) = 6;
temp.at<float>(8, 10) = 4;
temp.at<float>(11, 13) = 7;
temp.at<float>(10, 3) = 8;
temp.at<float>(7, 13) = 3;
vector<SRegionalMaxPoint> buffer_(5);
imregionalmax(temp, buffer_);
cv::Mat debug;
cv::cvtColor(temp, debug, cv::COLOR_GRAY2BGR);
for (auto it = buffer_.begin(); it != buffer_.end(); ++it)
{
circle(debug, cv::Point(it->col, it->row), 1, cv::Scalar(0, 255, 0));
}
This solution does not take plateaus into account so it is not exactly the same as matlab's imregionalmax()
I think you want to use the
MinMaxLoc(arr, mask=NULL)-> (minVal, maxVal, minLoc, maxLoc)
Finds global minimum and maximum in array or subarray
function on you image