Image Dimension Size in Denoising Image using CNN - image

I have a set of synthetically noisy images. Example is shown below:
I have also their corresponding clean text images as my ground truth data. Example below:
The dimension size of the two images is 4918 x 5856. Is it an appropriate size for training my Convolutional Neural Network that will perform image denoising. If no, what shall I do? Resize or crop? Thanks.

This resolution really is overkill. You can start off with 1/64 of the size ~(600,750), which is already pretty big.

I was facing this problem recently as well. I learned that you need to crop the image into patches, each of about 500x500. Then you need to denoise each patch and put it all together. This usually gets the most accurate results. Let me know if you need anything else!

Related

Would it be effective to crop image in yolo v4?

Example Image
For example as Image above, area I need is just like red box, and other section doesn't have any labels for classification/object detection.
What I think is "If I use cropped image to red box will occur better effect" because there's to much useless area without labels in original image. When mosaic augmentation used in yolo v4, It will put images together in one. And, because there's so many area without labels, data after mosaic can be useless than before.
But, This is just my guess, and I need a test to confirm it, but the lack of computing power is limiting the actual test. So the question is, Is it possible to actually improve performance if the original image is cropped in the form of a red box? Is that why I guessed correctly?
Also, my partner said that cropping is not a good choice in Yolo because it can ruin the proportion of the object, but I couldn't understand what the proportion of the object meant in Yolo. I wonder why the proportion of objects in Yolo is not suit with cropping.
Thanks for read, and have a nice day
simply you shouldn't resize the images, however, if the training/testing data set contains considerable difference among width and heights, use the data augmentation methods. Pls, follow the link for more information.
https://github.com/pjreddie/darknet/issues/800

Equalize contrast and brightness across multiple images

I have roughly 160 images for an experiment. Some of the images, however, have clearly different levels of brightness and contrast compared to others. For instance, I have something like the two pictures below:
I would like to equalize the two pictures in terms of brightness and contrast (probably find some level in the middle and not equate one image to another - though this could be okay if that makes things easier). Would anyone have any suggestions as to how to go about this? I'm not really familiar with image analysis in Matlab so please bear with my follow-up questions should they arise. There is a question for Equalizing luminance, brightness and contrast for a set of images already on here but the code doesn't make much sense to me (due to my lack of experience working with images in Matlab).
Currently, I use Gimp to manipulate images but it's time consuming with 160 images and also just going with subjective eye judgment isn't very reliable. Thank you!
You can use histeq to perform histogram specification where the algorithm will try its best to make the target image match the distribution of intensities / histogram of a source image. This is also called histogram matching and you can read up about it on my previous answer.
In effect, the distribution of intensities between the two images should hopefully be the same. If you want to take advantage of this using histeq, you can specify an additional parameter that specifies the target histogram. Therefore, the input image would try and match itself to the target histogram. Something like this would work assuming you have the images stored in im1 and im2:
out = histeq(im1, imhist(im2));
However, imhistmatch is the more better version to use. It's almost the same way you'd call histeq except you don't have to manually compute the histogram. You just specify the actual image to match itself:
out = imhistmatch(im1, im2);
Here's a running example using your two images. Note that I'll opt to use imhistmatch instead. I read in the two images directly from StackOverflow, I perform a histogram matching so that the first image matches in intensity distribution with the second image and we show this result all in one window.
im1 = imread('http://i.stack.imgur.com/oaopV.png');
im2 = imread('http://i.stack.imgur.com/4fQPq.png');
out = imhistmatch(im1, im2);
figure;
subplot(1,3,1);
imshow(im1);
subplot(1,3,2);
imshow(im2);
subplot(1,3,3);
imshow(out);
This is what I get:
Note that the first image now more or less matches in distribution with the second image.
We can also flip it around and make the first image the source and we can try and match the second image to the first image. Just flip the two parameters with imhistmatch:
out = imhistmatch(im2, im1);
Repeating the above code to display the figure, I get this:
That looks a little more interesting. We can definitely see the shape of the second image's eyes, and some of the facial features are more pronounced.
As such, what you can finally do in the end is choose a good representative image that has the best brightness and contrast, then loop over each of the other images and call imhistmatch each time using this source image as the reference so that the other images will try and match their distribution of intensities to this source image. I can't really write code for this because I don't know how you are storing these images in MATLAB. If you share some of that code, I'd love to write more.

Is it possible to get originals HQ images from CIFAR10 dataset?

I'm currently working on my thesis on the neural networks. I'm using the CIFAR10 as a reference dataset. Now I would like to show some example results in my paper. The problem is, that the images in the dataset are 32x32 pixels so it's really hard to recognize something on them when printed on paper.
Is there any way to get hold of the original images with higher resolution?
UPDATE: I'm not asking for image processing algorithm, but for the original images presented in CIFAR-10. I need some higher resolution samples to put in my paper.
I now have the same problem and I just found your question.
It seems that CIFAR was built from labeling the tinyimages dataset, and are kind enough to share the indexing from CIFAR to tinyimages. Now tinyimages contain metadata file with URL of the original images and a toolbox for getting for any image you wish (e.g. those included in the CIFAR index).
So one may write a mat file which does this and share the results...
They're just small:
The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset.
You could use Google reverse image search if you're curious.

How can I deblur an image in matlab?

I need to remove the blur this image:
Image source: http://www.flickr.com/photos/63036721#N02/5733034767/
Any Ideas?
Although previous answers are right when they say that you can't recover lost information, you could investigate a little and make a few guesses.
I downloaded your image in what seems to be the original size (75x75) and you can see here a zoomed segment (one little square = one pixel)
It seems a pretty linear grayscale! Let's verify it by plotting the intensities of the central row. In Mathematica:
ListLinePlot[First /# ImageData[i][[38]][[1 ;; 15]]]
So, it is effectively linear, starting at zero and ending at one.
So you may guess it was originally a B&W image, linearly blurred.
The easiest way to deblur that (not always giving good results, but enough in your case) is to binarize the image with a 0.5 threshold. Like this:
And this is a possible way. Just remember we are guessing a lot here!
HTH!
You cannot generally retrieve missing information.
If you know what it is an image of, in this case a Gaussian or Airy profile then it's probably an out of focus image of a point source - you can determine the characteristics of the point.
Another technique is to try and determine the character tics of the blurring - especially if you have many images form the same blurred system. Then iteratively create a possible source image, blur it by that convolution and compare it to the blurred image.
This is the general technique used to make radio astronomy source maps (images) and was used for the flawed Hubble Space Telescope images
When working with images one of the most common things is to use a convolution filter. There is a "sharpen" filter that does what it can to remove blur from an image. An example of a sharpen filter can be found here:
http://www.panoramafactory.com/sharpness/sharpness.html
Some programs like matlab make convolution really easy: conv2(A,B)
And most nice photo editing have the filters under some name or another (sharpen usually).
But keep in mind that filters can only do so much. In theory, the actual information has been lost by the blurring process and it is impossible to perfectly reconstruct the initial image (no matter what TV will lead you to believe).
In this case it seems like you have a very simple image with only black and white. Knowing this about your image you could always use a simple threshold. Set everything above a certain threshold to white, and everything below to black. Once again most photo editing software makes this really easy.
You cannot retrieve missing information, but under certain assumptions you can sharpen.
Try unsharp masking.

Detecting if two images are visually identical

Sometimes two image files may be different on a file level, but a human would consider them perceptively identical. Given that, now suppose you have a huge database of images, and you wish to know if a human would think some image X is present in the database or not. If all images had a perceptive hash / fingerprint, then one could hash image X and it would be a simple matter to see if it is in the database or not.
I know there is research around this issue, and some algorithms exist, but is there any tool, like a UNIX command line tool or a library I could use to compute such a hash without implementing some algorithm from scratch?
edit: relevant code from findimagedupes, using ImageMagick
try $image->Sample("160x160!");
try $image->Modulate(saturation=>-100);
try $image->Blur(radius=>3,sigma=>99);
try $image->Normalize();
try $image->Equalize();
try $image->Sample("16x16");
try $image->Threshold();
try $image->Set(magick=>'mono');
($blob) = $image->ImageToBlob();
edit: Warning! ImageMagick $image object seems to contain information about the creation time of an image file that was read in. This means that the blob you get will be different even for the same image, if it was retrieved at a different time. To make sure the fingerprint stays the same, use $image->getImageSignature() as the last step.
findimagedupes is pretty good. You can run "findimagedupes -v fingerprint images" to let it print "perceptive hash", for example.
Cross-correlation or phase correlation will tell you if the images are the same, even with noise, degradation, and horizontal or vertical offsets. Using the FFT-based methods will make it much faster than the algorithm described in the question.
The usual algorithm doesn't work for images that are not the same scale or rotation, though. You could pre-rotate or pre-scale them, but that's really processor intensive. Apparently you can also do the correlation in a log-polar space and it will be invariant to rotation, translation, and scale, but I don't know the details well enough to explain that.
MATLAB example: Registering an Image Using Normalized Cross-Correlation
Wikipedia calls this "phase correlation" and also describes making it scale- and rotation-invariant:
The method can be extended to determine rotation and scaling differences between two images by first converting the images to log-polar coordinates. Due to properties of the Fourier transform, the rotation and scaling parameters can be determined in a manner invariant to translation.
Colour histogram is good for the same image that has been resized, resampled etc.
If you want to match different people's photos of the same landmark it's trickier - look at haar classifiers. Opencv is a great free library for image processing.
I don't know the algorithm behind it, but Microsoft Live Image Search just added this capability. Picasa also has the ability to identify faces in images, and groups faces that look similar. Most of the time, it's the same person.
Some machine learning technology like a support vector machine, neural network, naive Bayes classifier or Bayesian network would be best at this type of problem. I've written one each of the first three to classify handwritten digits, which is essentially image pattern recognition.
resize the image to a 1x1 pixle... if they are exact, there is a small probability they are the same picture...
now resize it to a 2x2 pixle image, if all 4 pixles are exact, there is a larger probability they are exact...
then 3x3, if all 9 pixles are exact... good chance etc.
then 4x4, if all 16 pixles are exact,... better chance.
etc...
doing it this way, you can make efficiency improvments... if the 1x1 pixel grid is off by a lot, why bother checking 2x2 grid? etc.
If you have lots of images, a color histogram could be used to get rough closeness of images before doing a full image comparison of each image against each other one (i.e. O(n^2)).
There is DPEG, "The" Duplicate Media Manager, but its code is not open. It's a very old tool - I remember using it in 2003.
You could use diff to see if they are REALLY different.. I guess it will remove lots of useless comparison. Then, for the algorithm, I would use a probabilistic approach.. what are the chances that they look the same.. I'd based that on the amount of rgb in each pixel. You could also find some other metrics such as luminosity and stuff like that.

Resources