what is the diffrence between time varying copula and constant copula - time

Hi everyone I had read a lot of paper about copula and forecasting with copula in time series but I didn't get the point what's the difference between time-varying copula models and constant copula models is when we work with ARMA-GARCH model that's the meaning of time-varying and when we work with ARIMA model we say that our model based on constant copula.
please guys any information I will be thankful

Related

The value of K in KNN & the accuracy of the model

I am working on KNN algorithm, I have some questions please I need answers:
I tried different values of K such as 3, 5, 7, and sqrt(n)=73. I get different accuracies according to these different values of K. What K should I use in my model and why ??
What is the best percentage that I should use to split the dataset into train and test sets ??
why the accuracy of the train set is always greater than the accuracy of test set ??
Which accuracy (train accuracy or test accuracy) is used to describe the overall model accuracy ??
Choosing the value of K is not a exact science. In this post, user20160 explained a procedure to choose a good K using k-fold cross validation.
Usually, 80/20 and 70/30 ratios are used but once again, it is not a absolute truth. If your train set ratio is too large, your model could overfit which means your model learns specially for the train set and will not be performant with real cases. On another hand, if your train set is too small, your model could underfit.
The accuracy of the train set is often greater than the test one because your model is only trained with the train set and test dataset are cases your model has never seen before. It is like learning to ride a bike with only one bike and being evaluated with another bike.
The train accuracy is not realistic to evaluate the performance of your model since train dataset is well known by your model. Test accuracy is more relevant because test dataset is new and has never been seen by your model.
To better understand everything about model evaluation I strongly recommend you to take look at the cross validation link above.

Clarifying statsmodels AutoReg(), ARMA() and SARIMAX() for time-series forecasting

I am buidling my first time-series prediction model with scikit-learn's LinearRegression(). I also came across statsmodels AutoReg(), ARMA() and SARIMAX(). Unfortunately out of the literature I could not figure out to consider them. Are they alternatives to LinearRegression()? Are they ML? Are they fundamental different?
I'd appreciate a hint, where to look further. Thanks.
All three fit variants of Seasonal Autoregressive Integrated Moving Average with eXogenous Variables (SARIMAX) models.
AutoReg
AutoReg is limited to only Autoregressive Models and so does not include Seasonal or Moving Average components. It does support exogenous regressors. It also supports complex deterministic processes such as Fourier series to model multiple seasonalities. Parameters are estimated using OLS which is equivalent to conditional maximum likelihood. Since parameters are estimated using OLS, estimation is very fast and completely deterministic.
ARIMA
ARIMA is a restricted version of SARIMAX that does not include Seasonal components or Exogenous regressors. Because it excludes these two types of terms, it can offer additional fitting options that are not available when fitting a full SARIMAX model. These have different statistical properties than the Maximum Likelihood method that is the only method available in SARIMAX (ARIMA also supports Maximum Likelihood). Many of these alternative parameter estimation methods are also faster than ML.
SARIMAX
SARIMAX supports all features of ARIMA plus the two additional components. It can only be estimated using Maximum Likelihood. ML uses numerical methods to maximize the function and so estimation of some series/models may encounter difficulties converging.
The examples page is the best place to look to see the detailed use of these models. Many of the notebooks include both code examples and LaTeX markup that explains the underlying math.

How to implement Breusch-Godfrey test for a regression with ARIMA errors in R

I’m fitting a regression with ARIMA errors with the fable package and as mentioned im my previous question the Breusch-Godfrey test is not available there.
The regression part of the model has two pairs of Fourier terms to account for yearly seasonality and several exogenous regressors. The residuals are modeled with a seasonal ARIMA(2,0,0)(1,0,0)[7] model. My goal is to check for autocorrelation in residuals.
I can use the Ljung-Box test but according to this thread and textbook sources there it will not be valid in presence of lags of the dependent variable.
And I’m afraid i will loose my model specification using different packages/libraries. An alternative might be to use Arima from the forecast package and retain model specification. Then use bgtest from lmtest package. But I can’t figure out how to do this.
According to this R forum the Breusch-Godfrey test for an ARIMA model can be done by fitting a simple regression of the residuals from the fitted model on a constant and then perform a bgtest. But it only concerns a simple AR(1) model with no exogenous regressors.
Is this the right way to do it? I’m concerned that for the BG test you have to perform an auxiliary regression on the regressors and lagged resuduals up to order p. How in this case the bgtest knows the X variables since they are not stored in the residuals object - this should be a simple vector.

price predicting using regreddion

I have dataset of gold prices and after modifying and some preprocessing i ended up with dataframe below:
There is 50,000 record in dataset and there are morethan 500 different markets with different frequencies, all columns expect date are int type and date is datetime object. i need to predict price per unit in some specific dates. but somehow i baffled with so many methods.
My question is what regression algorithm/method is results good prediction for this kind of data ?
In machine learning or data mining as they always say, a lot of things can be done in a lot of ways. Lets try to use elimination to decide on the algorithm for the given problem.The primary case is that the class variable (feature to be predicted) is continuous hence you should use any regression algorithms. I would suggest to go with linear regression, check the accuracy using r^2 score which is basically a squared difference between an actual and a predicted value. If it is not on par, try randomforest regressor.

ROC Curve reduces when model is applied to a validation dataset

I am working on a logistic regression model and will appreciate if anyone can help me on this. I built a logistic regression model on a training data set and got AUC of 0.87 , however when I score the the validation data set using the model the AUC reduces to 0.62. What might be the cause?. Thank you in advance
ROC curve assess the fit between the model and the data. If you overfit your training data, you will get an overly optimistic estimate of the performance of the model when you assess it with the training data itself (resubstitution).
This is why you must always test your model on a dataset that was not used to train it. Have a look at cross-validation for a common way to do it.

Resources