Copy Structure with 2D Array Pointer in C++ - Pointer Arithmetic - c++11

The following code doesnt allow the pointer to be accessed as a 2D Array with the notation i have used in class. Am i missing something here ? Src and Dst are allocated memory outside this func.
/* Map is a 2 Dimensional Array width = x and height = y */
/* if value of loc in src is 32 do not copy to dest */
struct Map {
int *loc;
int x; /
int y;
}
/* Copy Map from Source to Dest */
void copyMap(Map *src, Map *dst)
{
for (int i=0 ; i < src->x; x++)
{
for (int j=0 ; j < src->y; y++)
{
// loc is 32 skip save to dest
if (src->loc[i][j] != 32)
{
dest->loc[i][j] = src->loc[i][j]; // ==> Cant i access the pointer as 2D Array
}
return;
}
}
}

Related

What is segmentation fault. How to deal with it [duplicate]

This question already has answers here:
What is a segmentation fault?
(17 answers)
Closed 2 years ago.
Problem:
A student signed up for workshops and wants to attend the maximum
number of workshops where no two workshops overlap. You must do the
following: Implement structures:
struct Workshop having the following members: The workshop's start time. The workshop's duration. The workshop's end time.
struct Available_Workshops having the following members: An integer, (the number of workshops the student signed up for). An
array of type Workshop array having size . Implement functions:
Available_Workshops* initialize (int start_time[], int duration[], int n) Creates an Available_Workshops object and
initializes its elements using the elements in the and parameters
(both are of size ). Here, and are the respective start time and
duration for the workshop. This function must return a pointer to
an Available_Workshops object.
int CalculateMaxWorkshops(Available_Workshops* ptr) Returns the maximum number of workshops the student can attend—without overlap.
The next workshop cannot be attended until the previous workshop
ends. Note: An array of unkown size ( ) should be declared as
follows: DataType* arrayName = new DataType[n];
Your initialize function must return a pointer to an
Available_Workshops object. Your CalculateMaxWorkshops function
must return maximum number of non-overlapping workshops the student
can attend.
Sample Input
6
1 3 0 5 5 8
1 1 6 2 4 1
Sample Output
4
Explanation The first line denotes , the number of workshops. The next line contains space-separated integers where the integer
is the workshop's start time. The next line contains
space-separated integers where the integer is the workshop's
duration. The student can attend the workshops and without
overlap, so CalculateMaxWorkshops returns to main (which then
prints to stdout).
MY CODE:
#include <iostream>
using namespace std;
class Workshop{
public:
int start_time{},duration{},end_time{};};
class Available_Workshops
{
public:
int n{};
struct Workshop*arr=new struct Workshop[n];
~Available_Workshops()
{
delete [] arr;
}
void arr_sort();
void arr_delete(int i);
};
////////////////////////////////////////////////////////////////////////////////////////////
Available_Workshops * initialize(int start_time[],int duration[],int n)
{
Available_Workshops * x=new Available_Workshops{};
x->n=n;
for(int i=0;i<n;i++)
{
x->arr[i].start_time=start_time[i];
x->arr[i].duration=duration[i];
x->arr[i].end_time=start_time[i]+duration[i];
}
return x;
}
///////////////////////////////////////////////////////////////////////////////////////////
void Available_Workshops:: arr_delete(int i)
{
n-=1;
for(int j=i;j<n;j++)
{
arr[j]=arr[j+1];
}
}
///////////////////////////////////////////////////////////////////////////////////////////
void Available_Workshops:: arr_sort()
{
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(arr[i].start_time>arr[j].start_time)
{
struct Workshop temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
int CalculateMaxWorkshops(Available_Workshops * x)
{
x->arr_sort();
for(int i=0;i<x->n-1;i++)
{
for(int j=i+1;j<x->n;j++)
{
if(x->arr[i].end_time>x->arr[j].start_time)
{
if(x->arr[i].duration>=x->arr[j].duration)
x->arr_delete(i);
else x->arr_delete(j);
j--;
}
}
}
int y=x->n;
delete x;
return y;
}
int main(int argc, char *argv[]) {
int n; // number of workshops
cin >> n;
// create arrays of unknown size n
int* start_time = new int[n];
int* duration = new int[n];
for(int i=0; i < n; i++){
cin >> start_time[i];
}
for(int i = 0; i < n; i++){
cin >> duration[i];
}
Available_Workshops * ptr;
ptr = initialize(start_time,duration, n);
cout << CalculateMaxWorkshops(ptr) << endl;
return 0;
}
My code is not running. It has segmentation fault. Please help me find this error
You bug can be seen from the class declaration:
class Available_Workshops
{
public:
int n{};
struct Workshop* arr = new struct Workshop[n];
~Available_Workshops()
{
delete[] arr;
}
void arr_sort();
void arr_delete(int i);
};
Member n gets explicitly initialized to 0. Yet, your initialize function will happily fill in more elements into arr (an array of zero elements) and cause all kinds of undefined behavior.
You really, really want a proper constructor for your class instead of trying to inline initialize the members.
Available_Workshops(int size) :
n(size)
{
arr = new Workshop[n];
}
Another issue, although not related to your crash is inside your arr_delete function.
for (int j = i; j < n; j++)
{
arr[j] = arr[j + 1];
}
When j == n-1 on the last iteration of the loop, it will execute arr[n-1] = arr[n]. Accesing arr[n] is undefined behavior since the only valid indices in the array are from [0..n-1]

Segmentation Fault accessing qpscale_table in AVFrame

I'm modifying this file slightly: https://gist.github.com/yohhoy/f0444d3fc47f2bb2d0e2
This code decodes a video and makes opencv Mats out of the frame pixels as it goes.
In particular I only want to grab frames that have specific macroblock-related data. I'm attempting to get that data like this:
total_qp = get_total_qp(decframe->qscale_table, mb_width, mb_height, mb_stride);
However, whenever I try to access the data by iterating over that array, I get a segmentation fault:
static float get_total_qp(int8_t *qscale_table, int mb_width, int mb_height, int mb_stride)
{
int mb_count = mb_height * mb_width;
int y, x;
float qp_total = 0.0f;
for (y = 0; y < mb_height; y++) {
for (x = 0; x < mb_width; x++) {
qp_total += qscale_table[x + y * mb_stride]; <-- SEGFAULT here
}
}
return qp_total;
}
I've also tried sending in:
frame->qscale_table
and I've tried populating it, but this own't compile because it can't find that function:
int8_t *qscale_table = av_frame_get_qp_table(decframe->qscale_table, &mb_stride, &qscale_type);
So my question is this:
Given an AVFrame* how do I ensure that the qscale_table is populated and access it?
It turns out that the qpscale_table doesn't get exported onto the decoded frame after the decoding happens in h264dec.c.
In order to retrieve the values I had to modify the finalize_frame method in h264dec to export the qscale_table onto the frame, like so:
static int h264_export_qp_table(H264Context *h, AVFrame *f, H264Picture *p, int qp_type)
{
AVBufferRef *ref = av_buffer_ref(p->qscale_table_buf);
int offset = 2*h->mb_stride + 1;
if(!ref)
return AVERROR(ENOMEM);
av_assert0(ref->size >= offset + h->mb_stride * ((f->height+15)/16));
ref->size -= offset;
ref->data += offset;
return av_frame_set_qp_table(f, ref, h->mb_stride, f->qscale_type);
}
and add in the call into finalize_frame:
...
if (CONFIG_MPEGVIDEO) {
ff_print_debug_info2(h->avctx, dst, NULL,
out->mb_type,
out->qscale_table,
out->motion_val,
NULL,
h->mb_width, h->mb_height, h->mb_stride, 1);
// NT: make the qscale_table accessible!
h264_export_qp_table(h, dst, out, FF_QSCALE_TYPE_H264);
}
...
And then recompile FFmpeg using these instructions: https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu

Filter only digit sequences containing a given set of digits

I have a large list of digit strings like this one. The individual strings are relatively short (say less than 50 digits).
data = [
'300303334',
'53210234',
'123456789',
'5374576807063874'
]
I need to find out a efficient data structure (speed first, memory second) and algorithm which returns only those strings that are composed of a given set of digits.
Example results:
filter(data, [0,3,4]) = ['300303334']
filter(data, [0,1,2,3,4,5]) = ['300303334', '53210234']
The data list will usually fit into memory.
For each digit, precompute a postings list that don't contain the digit.
postings = [[] for _ in xrange(10)]
for i, d in enumerate(data):
for j in xrange(10):
digit = str(j)
if digit not in d:
postings[j].append(i)
Now, to find all strings that contain, for example, just the digits [1, 3, 5] you can merge the postings lists for the other digits (ie: 0, 2, 4, 6, 7, 8, 9).
def intersect_postings(p0, p1):
i0, i1 = next(p0), next(p1)
while True:
if i0 == i1:
yield i0
i0, i1 = next(p0), next(p1)
elif i0 < i1: i0 = next(p0)
else: i1 = next(p1)
def find_all(digits):
p = None
for d in xrange(10):
if d not in digits:
if p is None: p = iter(postings[d])
else: p = intersect_postings(p, iter(postings[d]))
return (data[i] for i in p) if p else iter(data)
print list(find_all([0, 3, 4]))
print list(find_all([0, 1, 2, 3, 4, 5]))
A string can be encoded by a 10-bit number. There are 2^10, or 1,024 possible values.
So create a dictionary that uses an integer for a key and a list of strings for the value.
Calculate the value for each string and add that string to the list of strings for that value.
General idea:
Dictionary Lookup;
for each (string in list)
value = 0;
for each character in string
set bit N in value, where N is the character (0-9)
Lookup[value] += string // adds string to list for this value in dictionary
Then, to get a list of the strings that match your criteria, just compute the value and do a direct dictionary lookup.
So if the user asks for strings that contain only 3, 5, and 7:
value = (1 << 3) || (1 << 5) || (1 << 7);
list = Lookup[value];
Note that, as Matt pointed out in comment below, this will only return strings that contain all three digits. So, for example, it wouldn't return 37. That seems like a fatal flaw to me.
Edit
If the number of symbols you have to deal with is very large, then the number of possible combinations becomes too large for this solution to be practical.
With a large number of symbols, I'd recommend an inverted index as suggested in the comments, combined with a secondary filter that removes the strings that contain extraneous digits.
Consider a function f which constructs a bitmask for each string with bit i set if digit i is in the string.
For example,
f('0') = 0b0000000001
f('00') = 0b0000000001
f('1') = 0b0000000010
f('1100') = 0b0000000011
Then I suggest storing a list of strings for each bitmask.
For example,
Bitmask 0b0000000001 -> ['0','00']
Once you have prepared this data structure (which is the same size as your original list), you can then easily access all the strings for a particular filter by accessing all lists where the bitmask is a subset of the digits in your filter.
So for your example of filter [0,3,4] you would return the lists from:
Strings containing just 0
Strings containing just 3
Strings containing just 4
Strings containing 0 and 3
Strings containing 0 and 4
Strings containing 3 and 4
Strings containing 0 and 3 and 4
Example Python Code
from collections import defaultdict
import itertools
raw_data = [
'300303334',
'53210234',
'123456789',
'5374576807063874'
]
def preprocess(raw_data):
data = defaultdict(list)
for s in raw_data:
bitmask = 0
for digit in s:
bitmask |= 1<<int(digit)
data[bitmask].append(s)
return data
def filter(data,mask):
for r in range(len(mask)):
for m in itertools.combinations(mask,r+1):
bitmask = sum(1<<digit for digit in m)
for s in data[bitmask]:
yield s
data = preprocess(raw_data)
for a in filter(data, [0,1,2,3,4,5]):
print a
Just for kicks, I have coded up Jim's lovely algorithm and the Perl is here if anyone wants to play with it. Please do not accept this as an answer or anything, pass all credit to Jim:
#!/usr/bin/perl
use strict;
use warnings;
my $Debug=1;
my $Nwords=1000;
my ($word,$N,$value,$i,$j,$k);
my (#dictionary,%Lookup);
################################################################################
# Generate "words" with random number of characters 5-30
################################################################################
print "DEBUG: Generating $Nwords word dictionary\n" if $Debug;
for($i=0;$i<$Nwords;$i++){
$j = rand(25) + 5; # length of this word
$word="";
for($k=0;$k<$j;$k++){
$word = $word . int(rand(10));
}
$dictionary[$i]=$word;
print "$word\n" if $Debug;
}
# Add some obvious test cases
$dictionary[++$i]="0" x 50;
$dictionary[++$i]="1" x 50;
$dictionary[++$i]="2" x 50;
$dictionary[++$i]="3" x 50;
$dictionary[++$i]="4" x 50;
$dictionary[++$i]="5" x 50;
$dictionary[++$i]="6" x 50;
$dictionary[++$i]="7" x 50;
$dictionary[++$i]="8" x 50;
$dictionary[++$i]="9" x 50;
$dictionary[++$i]="0123456789";
################################################################################
# Encode words
################################################################################
for $word (#dictionary){
$value=0;
for($i=0;$i<length($word);$i++){
$N=substr($word,$i,1);
$value |= 1 << $N;
}
push(#{$Lookup{$value}},$word);
print "DEBUG: $word encoded as $value\n" if $Debug;
}
################################################################################
# Do lookups
################################################################################
while(1){
print "Enter permitted digits, separated with commas: ";
my $line=<STDIN>;
my #digits=split(",",$line);
$value=0;
for my $d (#digits){
$value |= 1<<$d;
}
print "Value: $value\n";
print join(", ",#{$Lookup{$value}}),"\n\n" if defined $Lookup{$value};
}
I like Jim Mischel's approach. It has pretty efficient look up and bounded memory usage. Code in C follows:
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <readline/readline.h>
#include <readline/history.h>
enum {
zero = '0',
nine = '9',
numbers = nine - zero + 1,
masks = 1 << numbers,
};
typedef uint16_t mask;
struct list {
char *s;
struct list *next;
};
typedef struct list list_cell;
typedef struct list *list;
static inline int is_digit(char c) { return c >= zero && c <= nine; }
static inline mask char2mask(char c) { return 1 << (c - zero); }
static inline mask add_char2mask(mask m, char c) {
return m | (is_digit(c) ? char2mask(c) : 0);
}
static inline int is_set(mask m, mask n) { return (m & n) != 0; }
static inline int is_set_char(mask m, char c) { return is_set(m, char2mask(c)); }
static inline int is_submask(mask sub, mask m) { return (sub & m) == sub; }
static inline char *sprint_mask(char buf[11], mask m) {
char *s = buf;
char i;
for(i = zero; i <= nine; i++)
if(is_set_char(m, i)) *s++ = i;
*s = 0;
return buf;
}
static inline mask get_mask(char *s) {
mask m=0;
for(; *s; s++)
m = add_char2mask(m, *s);
return m;
}
static inline int is_empty(list l) { return !l; }
static inline list insert(list *l, char *s) {
list cell = (list)malloc(sizeof(list_cell));
cell->s = s;
cell->next = *l;
return *l = cell;
}
static void *foreach(void *f(char *, void *), list l, void *init) {
for(; !is_empty(l); l = l->next)
init = f(l->s, init);
return init;
}
struct printer_state {
int first;
FILE *f;
};
static void *prin_list_member(char *s, void *data) {
struct printer_state *st = (struct printer_state *)data;
if(st->first) {
fputs(", ", st->f);
} else
st->first = 1;
fputs(s, st->f);
return data;
}
static void print_list(list l) {
struct printer_state st = {.first = 0, .f = stdout};
foreach(prin_list_member, l, (void *)&st);
putchar('\n');
}
static list *init_lu(void) { return (list *)calloc(sizeof(list), masks); }
static list *insert2lu(list lu[masks], char *s) {
mask i, m = get_mask(s);
if(m) // skip string without any number
for(i = m; i < masks; i++)
if(is_submask(m, i))
insert(lu+i, s);
return lu;
}
int usage(const char *name) {
fprintf(stderr, "Usage: %s filename\n", name);
return EXIT_FAILURE;
}
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
static inline void chomp(char *s) { if( (s = strchr(s, '\n')) ) *s = '\0'; }
list *load_file(FILE *f) {
char *line = NULL;
size_t len = 0;
ssize_t read;
list *lu = init_lu();
for(; (read = getline(&line, &len, f)) != -1; line = NULL) {
chomp(line);
insert2lu(lu, line);
}
return lu;
}
void read_reqs(list *lu) {
char *line;
char buf[11];
for(; (line = readline("> ")); free(line))
if(*line) {
add_history(line);
mask m = get_mask(line);
printf("mask: %s\nstrings: ", sprint_mask(buf, m));
print_list(lu[m]);
};
putchar('\n');
}
int main(int argc, const char* argv[] ) {
const char *name = argv[0];
FILE *f;
list *lu;
if(argc != 2) return usage(name);
f = fopen(argv[1], "r");
if(!f) handle_error("open");
lu = load_file(f);
fclose(f);
read_reqs(lu);
return EXIT_SUCCESS;
}
To compile use
gcc -lreadline -o digitfilter digitfilter.c
And test run:
$ cat data.txt
300303334
53210234
123456789
5374576807063874
$ ./digitfilter data.txt
> 034
mask: 034
strings: 300303334
> 0,1,2,3,4,5
mask: 012345
strings: 53210234, 300303334
> 0345678
mask: 0345678
strings: 5374576807063874, 300303334
Put each value into a set-- Eg.: '300303334'={3, 0, 4}.
Since the length of your data items are bound by a constant (50),
you can do these at O(1) time for each item using Java HashSet. The overall complexity of this phase adds up to O(n).
For each filter set, use containsAll() of HashSet to see whether
each of these data items is a subset of your filter. Takes O(n).
Takes O(m*n) in the overall where n is the number of data items and m the number of filters.

Converting lower/upper case letters without ctype.h

I just saw that this could technically work, the only mistake I couldn´t resolve was the last ASCII character that gets printed everytime I test it out, I also tested this out without using the name variable, I mean just making a substraction of 32 to any lower case letter in ASCII should give me their upper case one and it does, but I´m curious on why I´m getting an additional char, wich from what I see in screen is apparently Û.
#include <stdio.h>
main()
{
char name[22];
int i;
fputs("Type your name ",stdout);
fgets(name,22,stdin);
for (i = 0; name[i] != '\0'; i = i + 1)
printf("%c",(name[i])-32); /*This will convert lower case to upper */
/* using as reference the ASCII table*/
fflush(stdin);
getchar();
}
Perhaps there is a line break character at the end of the string.
You can check the chararacter code, so that you only convert characters that actually are lower case letters:
for (i = 0; name[i] != '\0'; i = i + 1) {
char c = name[i];
if (c => 97 && c <= 122) {
c -= 32;
}
printf("%c", c);
}
void read_chararray(char in_array[], int* Length)
{
int Indx = 0, Indx2 = 0, Indx3 = 0; // int declarations for indexs of some loops
char cinput = { 0 }, word[255] = { 0 }, word2[255] = { 0 }; // declaration of cinput and first char array before punctiation removed
for (Indx = 0; (cinput = getchar()) != '\n'; Indx++) { // Loop for getting characters from user stop at <enter>
word[Indx] = cinput; // Placing char into array while changing to lowercase
}
Indx2 = Indx; // Set Indx2 to Indx for loop operation
for (Indx = 0; Indx < Indx2; Indx++) { // Loop to check and replace upper characters with lower
cinput = word[Indx];
if (cinput >= 65 && cinput <= 90) { // If cinput is within the ASCII range 65 and 90, this indicates upper characters
cinput += 32; // Add 32 to cinput to shift to the lower character range within the ASCII table
in_array[Indx] = cinput; // Input new value into array pointer
}
else if (cinput >= 97 && cinput <= 122) // scans if character are lower ASCII, places them in array irraticating punctuation and whitespce
in_array[Indx] = cinput; // Input remaining lower case into array pointer
}
*Length = Indx; // final size of array set to Length variable for future use
}
#include<stdio.h>
void upper(char);
void main()
{
char ch;
printf("\nEnter the character in lower case");
scanf("%c", &ch);
upper(ch);
}
void upper( char c)
{
printf("\nUpper Case: %c", c-32);
}

Find local maxima in grayscale image using OpenCV

Does anybody know how to find the local maxima in a grayscale IPL_DEPTH_8U image using OpenCV? HarrisCorner mentions something like that but I'm actually not interested in corners ...
Thanks!
A pixel is considered a local maximum if it is equal to the maximum value in a 'local' neighborhood. The function below captures this property in two lines of code.
To deal with pixels on 'plateaus' (value equal to their neighborhood) one can use the local minimum property, since plateaus pixels are equal to their local minimum. The rest of the code filters out those pixels.
void non_maxima_suppression(const cv::Mat& image, cv::Mat& mask, bool remove_plateaus) {
// find pixels that are equal to the local neighborhood not maximum (including 'plateaus')
cv::dilate(image, mask, cv::Mat());
cv::compare(image, mask, mask, cv::CMP_GE);
// optionally filter out pixels that are equal to the local minimum ('plateaus')
if (remove_plateaus) {
cv::Mat non_plateau_mask;
cv::erode(image, non_plateau_mask, cv::Mat());
cv::compare(image, non_plateau_mask, non_plateau_mask, cv::CMP_GT);
cv::bitwise_and(mask, non_plateau_mask, mask);
}
}
Here's a simple trick. The idea is to dilate with a kernel that contains a hole in the center. After the dilate operation, each pixel is replaced with the maximum of it's neighbors (using a 5 by 5 neighborhood in this example), excluding the original pixel.
Mat1b kernelLM(Size(5, 5), 1u);
kernelLM.at<uchar>(2, 2) = 0u;
Mat imageLM;
dilate(image, imageLM, kernelLM);
Mat1b localMaxima = (image > imageLM);
Actually after I posted the code above I wrote a better and very very faster one ..
The code above suffers even for a 640x480 picture..
I optimized it and now it is very very fast even for 1600x1200 pic.
Here is the code :
void localMaxima(cv::Mat src,cv::Mat &dst,int squareSize)
{
if (squareSize==0)
{
dst = src.clone();
return;
}
Mat m0;
dst = src.clone();
Point maxLoc(0,0);
//1.Be sure to have at least 3x3 for at least looking at 1 pixel close neighbours
// Also the window must be <odd>x<odd>
SANITYCHECK(squareSize,3,1);
int sqrCenter = (squareSize-1)/2;
//2.Create the localWindow mask to get things done faster
// When we find a local maxima we will multiply the subwindow with this MASK
// So that we will not search for those 0 values again and again
Mat localWindowMask = Mat::zeros(Size(squareSize,squareSize),CV_8U);//boolean
localWindowMask.at<unsigned char>(sqrCenter,sqrCenter)=1;
//3.Find the threshold value to threshold the image
//this function here returns the peak of histogram of picture
//the picture is a thresholded picture it will have a lot of zero values in it
//so that the second boolean variable says :
// (boolean) ? "return peak even if it is at 0" : "return peak discarding 0"
int thrshld = maxUsedValInHistogramData(dst,false);
threshold(dst,m0,thrshld,1,THRESH_BINARY);
//4.Now delete all thresholded values from picture
dst = dst.mul(m0);
//put the src in the middle of the big array
for (int row=sqrCenter;row<dst.size().height-sqrCenter;row++)
for (int col=sqrCenter;col<dst.size().width-sqrCenter;col++)
{
//1.if the value is zero it can not be a local maxima
if (dst.at<unsigned char>(row,col)==0)
continue;
//2.the value at (row,col) is not 0 so it can be a local maxima point
m0 = dst.colRange(col-sqrCenter,col+sqrCenter+1).rowRange(row-sqrCenter,row+sqrCenter+1);
minMaxLoc(m0,NULL,NULL,NULL,&maxLoc);
//if the maximum location of this subWindow is at center
//it means we found the local maxima
//so we should delete the surrounding values which lies in the subWindow area
//hence we will not try to find if a point is at localMaxima when already found a neighbour was
if ((maxLoc.x==sqrCenter)&&(maxLoc.y==sqrCenter))
{
m0 = m0.mul(localWindowMask);
//we can skip the values that we already made 0 by the above function
col+=sqrCenter;
}
}
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
The first question to answer would be what is "local" in your opinion. The answer may well be a square window (say 3x3 or 5x5) or circular window of a certain radius. You can then scan over the entire image with the window centered at each pixel and pick the highest value in the window.
See this for how to access pixel values in OpenCV.
This is very fast method. It stored founded maxima in a vector of
Points.
vector <Point> GetLocalMaxima(const cv::Mat Src,int MatchingSize, int Threshold, int GaussKernel )
{
vector <Point> vMaxLoc(0);
if ((MatchingSize % 2 == 0) || (GaussKernel % 2 == 0)) // MatchingSize and GaussKernel have to be "odd" and > 0
{
return vMaxLoc;
}
vMaxLoc.reserve(100); // Reserve place for fast access
Mat ProcessImg = Src.clone();
int W = Src.cols;
int H = Src.rows;
int SearchWidth = W - MatchingSize;
int SearchHeight = H - MatchingSize;
int MatchingSquareCenter = MatchingSize/2;
if(GaussKernel > 1) // If You need a smoothing
{
GaussianBlur(ProcessImg,ProcessImg,Size(GaussKernel,GaussKernel),0,0,4);
}
uchar* pProcess = (uchar *) ProcessImg.data; // The pointer to image Data
int Shift = MatchingSquareCenter * ( W + 1);
int k = 0;
for(int y=0; y < SearchHeight; ++y)
{
int m = k + Shift;
for(int x=0;x < SearchWidth ; ++x)
{
if (pProcess[m++] >= Threshold)
{
Point LocMax;
Mat mROI(ProcessImg, Rect(x,y,MatchingSize,MatchingSize));
minMaxLoc(mROI,NULL,NULL,NULL,&LocMax);
if (LocMax.x == MatchingSquareCenter && LocMax.y == MatchingSquareCenter)
{
vMaxLoc.push_back(Point( x+LocMax.x,y + LocMax.y ));
// imshow("W1",mROI);cvWaitKey(0); //For gebug
}
}
}
k += W;
}
return vMaxLoc;
}
Found a simple solution.
In this example, if you are trying to find 2 results of a matchTemplate function with a minimum distance from each other.
cv::Mat result;
matchTemplate(search, target, result, CV_TM_SQDIFF_NORMED);
float score1;
cv::Point displacement1 = MinMax(result, score1);
cv::circle(result, cv::Point(displacement1.x+result.cols/2 , displacement1.y+result.rows/2), 10, cv::Scalar(0), CV_FILLED, 8, 0);
float score2;
cv::Point displacement2 = MinMax(result, score2);
where
cv::Point MinMax(cv::Mat &result, float &score)
{
double minVal, maxVal;
cv::Point minLoc, maxLoc, matchLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
matchLoc.x = minLoc.x - result.cols/2;
matchLoc.y = minLoc.y - result.rows/2;
return minVal;
}
The process is:
Find global Minimum using minMaxLoc
Draw a filled white circle around global minimum using min distance between minima as radius
Find another minimum
The the scores can be compared to each other to determine, for example, the certainty of the match,
To find more than just the global minimum and maximum try using this function from skimage:
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
You can parameterize the minimum distance between peaks, too. And more. To find minima, use negated values (take care of the array type though, 255-image could do the trick).
You can go over each pixel and test if it is a local maxima. Here is how I would do it.
The input is assumed to be type CV_32FC1
#include <vector>//std::vector
#include <algorithm>//std::sort
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
//structure for maximal values including position
struct SRegionalMaxPoint
{
SRegionalMaxPoint():
values(-FLT_MAX),
row(-1),
col(-1)
{}
float values;
int row;
int col;
//ascending order
bool operator()(const SRegionalMaxPoint& a, const SRegionalMaxPoint& b)
{
return a.values < b.values;
}
};
//checks if pixel is local max
bool isRegionalMax(const float* im_ptr, const int& cols )
{
float center = *im_ptr;
bool is_regional_max = true;
im_ptr -= (cols + 1);
for (int ii = 0; ii < 3; ++ii, im_ptr+= (cols-3))
{
for (int jj = 0; jj < 3; ++jj, im_ptr++)
{
if (ii != 1 || jj != 1)
{
is_regional_max &= (center > *im_ptr);
}
}
}
return is_regional_max;
}
void imregionalmax(
const cv::Mat& input,
std::vector<SRegionalMaxPoint>& buffer)
{
//find local max - top maxima
static const int margin = 1;
const int rows = input.rows;
const int cols = input.cols;
for (int i = margin; i < rows - margin; ++i)
{
const float* im_ptr = input.ptr<float>(i, margin);
for (int j = margin; j < cols - margin; ++j, im_ptr++)
{
//Check if pixel is local maximum
if ( isRegionalMax(im_ptr, cols ) )
{
cv::Rect roi = cv::Rect(j - margin, i - margin, 3, 3);
cv::Mat subMat = input(roi);
float val = *im_ptr;
//replace smallest value in buffer
if ( val > buffer[0].values )
{
buffer[0].values = val;
buffer[0].row = i;
buffer[0].col = j;
std::sort(buffer.begin(), buffer.end(), SRegionalMaxPoint());
}
}
}
}
}
For testing the code you can try this:
cv::Mat temp = cv::Mat::zeros(15, 15, CV_32FC1);
temp.at<float>(7, 7) = 1;
temp.at<float>(3, 5) = 6;
temp.at<float>(8, 10) = 4;
temp.at<float>(11, 13) = 7;
temp.at<float>(10, 3) = 8;
temp.at<float>(7, 13) = 3;
vector<SRegionalMaxPoint> buffer_(5);
imregionalmax(temp, buffer_);
cv::Mat debug;
cv::cvtColor(temp, debug, cv::COLOR_GRAY2BGR);
for (auto it = buffer_.begin(); it != buffer_.end(); ++it)
{
circle(debug, cv::Point(it->col, it->row), 1, cv::Scalar(0, 255, 0));
}
This solution does not take plateaus into account so it is not exactly the same as matlab's imregionalmax()
I think you want to use the
MinMaxLoc(arr, mask=NULL)-> (minVal, maxVal, minLoc, maxLoc)
Finds global minimum and maximum in array or subarray
function on you image

Resources