what's the best way to use "isSomething"? - performance

Hey guys,
I'm not having a problem, I was just wondering what's the best way of implementing isSomthing in OOP paradigm?
Take this example: we want to know if the user was temporarily (like 10 minutes) banned. Here are the two options:
Implementing isTempBanned() method in the User class. Then whenever we want to check if user is banned, we just call this method. no change to the other parts of the code is required.
Adding a isTempBanned property to the User class. Then whenever the state of user's ban changes, we update this property accordingly. Then when we need to know, we just use this property.
Can you explain Pros and Cons of each way? from these standpoints:
performance
code maintainability
clean code
readability
etc...
Keep in mind that there is no better way. I'm just asking to know when should I use the first method and when to use the second one.

Ultimately you have to use both of them!
based on Encapsulation principle , think of your example as a getter/setter scenario, to keep bugs as low as possible,
getter is User.isBanned method, setter is User.banUser method.
class User{
banned_until : Date = null
isBanned(){
if(this.banned_until){
return this.banned_until.valueOf() > new Date().valueOf();
}
return false;
}
banUser(){
this.banned_until = new Date() ///any date in future ....
}
}

isSomthing is usually used for boolean. no matter what data type you use. all differences are method and property differences.
I suggest you read this:
Properties vs Methods

Related

Single responsibility principle - function

I'm reading some tuts about SOLID programming, and I'm trying to refactor my test project to implement some of those rules.
Often I have doubts with SingleResponsibilityPrinciple, so I hope someone could help me with that.
As I understood, SRP means that (in case of a function), function should be responsible for only one thing. And that's seems pretty easy and simple, but I do get in a trap of doing more than thing.
This is simplified example:
class TicketService {
private ticket;
getTicket() {
httpClient.get().then(function(response) {
ticket = response.ticket;
emit(ticket); <----------------------
});
}
}
The confusing part is emit(ticket). So, my function is named getTicket, that's exactly what I'm doing there (fetching it from server e.g.), but on the other hand, I need to emit that change to all other parts of my application, and let them know that ticket is changed.
I could create separate set() function, where I could do setting of private variable, and emit it there, but that seems like a same thing.
Is this wrong? Does it break the rule? How would you fix it?
You could also return the ticket from the getTicket() function, and then have a separate function called setUpdatedTicket() that takes a ticket and sets the private parameter, and at the end calls the emit function.
This can lead to unexpected behavior. If I want to re-use your class in the future and I see with auto-completion in my IDE the method getTicket() I expect to get a Ticket.
However renaming this method to mailChangedTicket, ideally you want this method to call the getTicket method (which actually returns the ticket) and this way you have re-usable code which will make more sense.
You can take SRP really far, for example your TicketService has a httpClient, but it probably doesn't matter where the ticket comes from. In order to 'fix' this, you will have to create a seperate interface and class for this.
A few advantages:
Code is becoming more re-usable
It is easier to test parts separately
I can recommend the book 'Clean Code' from Robert C. Martin which gives some good guidelines to achieve this.

When to use Encapsulate Collection?

In the smell Data Class as Martin Fowler described in Refactoring, he suggests if I have a collection field in my class I should encapsulate it.
The pattern Encapsulate Collection(208) says we should add following methods:
get_unmodified_collection
add_item
remove_item
and remove these:
get_collection
set_collection
To make sure any changes on this collection need go through the class.
Should I refactor every class which has a collection field with this pattern? Or it depends on some other reasons like frequency of usage?
I use C++ in my project now.
Any suggestion would be helpful. Thanks.
These are well formulated questions and my answer is:
Should I refactor every class which has a collection field with this
pattern?
No, you should not refactor every class which has a collection field. Every fundamentalism is a way to hell. Use common sense and do not make your design too good, just good enough.
Or it depends on some other reasons like frequency of usage?
The second question comes from a common mistake. The reason why we refactor or use design pattern is not primarily the frequency of use. We do it to make the code more clear, more maintainable, more expandable, more understandable, sometimes (but not always!) more effective. Everything which adds to these goals is good. Everything which does not, is bad.
You might have expected a yes/no answer, but such one is not possible here. As said, use your common sense and measure your solution from the above mentioned viewpoints.
I generally like the idea of encapsulating collections. Also encapsulating plain Strings into named business classes. I do it almost always when the classes are meaningful in the business domain.
I would always prefer
public class People {
private final Collection<Man> people;
... // useful methods
}
over the plain Collection<Man> when Man is a business class (a domain object). Or I would sometimes do it in this way:
public class People implements Collection<Man> {
private final Collection<Man> people;
... // delegate methods, such as
#Override
public int size() {
return people.size();
}
#Override
public Man get(int index) {
// Here might also be some manipulation with the returned data etc.
return people.get(index);
}
#Override
public boolean add(Man man) {
// Decoration - added some validation
if (/* man does not match some criteria */) {
return false;
}
return people.add(man);
}
... // useful methods
}
Or similarly I prefer
public class StreetAddress {
private final String value;
public String getTextValue() { return value; }
...
// later I may add more business logic, such as parsing the street address
// to street name and house number etc.
}
over just using plain String streetAddress - thus I keep the door opened to any future change of the underlying logic and to adding any useful methods.
However, I try not to overkill my design when it is not needed so I am as well as happy with plain collections and plain Strings when it is more suited.
I think it depends on the language you are developing with. Since there are already interfaces that do just that C# and Java for example. In C# we have ICollection, IEnumerable, IList. In Java Collection, List, etc.
If your language doesn't have an interface to refer to a collection regarless of their inner implementation and you require to have your own abstraction of that class, then it's probably a good idea to do so. And yes, you should not let the collection to be modified directly since that completely defeats the purpose.
It would really help if you tell us which language are you developing with. Granted, it is kind of a language-agnostic question, but people knowledgeable in that language might recommend you the best practices in it and if there's already a way to achieve what you need.
The motivation behind Encapsulate Collection is to reduce the coupling of the collection's owning class to its clients.
Every refactoring tries to improve maintainability of the code, so future changes are easier. In this case changing the collection class from vector to list for example, changes all the clients' uses of the class. If you encapsulate this with this refactoring you can change the collection without changes to clients. This follows on of SOLID principles, the dependency inversion principle: Depend upon Abstractions. Do not depend upon concretions.
You have to decide for your own code base, whether this is relevant for you, meaning that your code base is still being changed and has to be maintained (then yes, do it for every class) or not (then no, leave the code be).

Should controller methods take arguments?

Given that there is file selection widget on the view and controller need to handle event of selecting file, should I rather write controller method:
public void fileSelected(String filePath){
//process filePath
}
or
public void fileSelected(){
String filePath = view.getSelectedFilePath();
//process filePath
}
The first approach seems to introduce less coupling between C and V: C don't know what exactly data does C need while handling given event.
But it requires creating a lot of verbose methods similar to getSelectedFile on V side.
On the other hand, second approach may lead to cluttered controller methods in more complex cases than in example (much more data to pass than just filePath).
From your own experience, which approach do you prefer?
The first approach is my favourite. The only difference is I would rather use an object (like Mario suggested) to pass arguments to the method. This way method's signature will not change when you add or remove some of the arguments. Less coupling is always good :)
One more thing:
If You want to try the second solution I recommend using a ViewFactory to remove view logic from the controller.
The first approach is the way to go;
public void fileSelected(String filePath){
//process filePath
}
The Controller should not care about how the View looks like or how it's implemented. It gets much clearer for the developer as well, when creating/updating the view, to know what an action in the controller wants. Also it makes it easier for method overloading.
Though, I don't know really how String filePath = view.getSelectedFilePath(); would work. Are we talking about parsing the View code/markup?
On the other hand, second approach may lead to cluttered controller methods in more complex cases than in example (much more data to pass than just filePath).
That's when you would create a View Model class (let's say we name it MyViewModel) to store all the properties that you need to send (may it be 10 properties) and then pass that in the action: fileSelected(MyViewModel model). That's how it's intended to be used and what the *ModelBinder's in asp.net mvc are there to help you with.
I think you need to look at this from a step back.
Worry less about how it gets in, and be more concerned with validation and error raising.
Tomorrow, your requirements could change and demand that you source the information via a different architectural approach. You could refactor the setup of [inputs / an input object] into a base controller class - or one of several classes for different controller domains.
If you focus on proper validation, whether within the controller (scrubbing) or outside of it (unit tests), then you perform more thorough decoupling though duck typing.
I would go with the first approach. It's reusable and separates concerns. Even if the method of getting the filePath in the future were to change, it won't affect your method's functionality.

method name for a long method

The good style (Clean Code book) says that a method's name should describe what the method does. So for example if I have a method that verifies an address, stores it in a database, and sends an email, should the name be something such as verifyAddressAndStoreToDatabaseAndSendEmail(address);
or
verifyAddress_StoreToDatabase_SendEmail(address);
although I can divide that functionality in 3 methods, I'll still need a method to call these 3 methods. So a large method name is inevitable.
Having And named methods certainly describes what the method does, but IMO it's not very readable as names can be very very large. How would you solve it?
EDIT: Maybe I could use fluent style to decompose the method name such as:
verifyAddress(address).storeToDatabase().sendEmail();
but I need a way to ensure the order of invocation. Maybe by using the state pattern, but this causes the code to grow.
How I approach this is to make the 3 smaller methods as you mentioned and then in the higher method that calls the 3 smaller ones, I name it after the "why" I need to do those three things.
Try to define why you need to do those steps and use that as the basis of the method name.
A single method should not do 3 things. Thus divide the work into 3 methods:
verifyAddress
storeAddress
sendEmail
I'm following up on my previous comment, but I've got more here than would fit reasonably in a comment so I'm answering.
The details of the method belong in the documentation not in the name of the method (in my opinion). Think of it this way... By putting SendEmail in the name of the method, you're committing implementation details to the method name. What if a decision is made down the road to send notification via SMS or twitter or something else instead of email? Do you change the name of the method and break your API, or do you have a method name that misleads the consumers of the API? Something to consider.
If you insist on keeping the functionality of the method in its name, I'd urge you to find something more generic. Perhaps something along the lines of VerifySaveAndNotify(Address address). That way, the method name tells you what it's doing without specifying how it does it. The parameter of type Address let's you know what is being verified and saved. All of that works together to make your method name informative, flexible, and terse.
EDIT: Maybe I could use fluent style to decompose the method name such as:
verifyAddress(address).storeToDatabase().sendEmail();
but I need a way to ensure the order of invocation. Maybe by using the state pattern, but this causes the code to grow.
To ensure ordering of commands in a fluent style, each result would be an object that exposes only the functionality required by the next step. For example:
public class Verifier
{
public DataStorer VerifyAddress(string address)
{
...
return new DataStorer(address);
}
}
public class DataStorer
{
public Emailer StoreToDataBase()
{
...
return new Emailer(...);
}
}
public class Emailer
{
public void SendEmail()
{
...
}
}
This is handy if you need to create a very granular design and want to optimise your classes for reuseability, but is likely to be design overkill under most circumstances. Better probably as others have said to choose a name that represents what the whole process is supposed to represent. You could simply call it "StoreAndEmail", making an assumption that verification is something you do routinely before committing data to any destination. The alternative if you don't mind names being long is to simply describe it in full and accept that a long name is necessary. In the end, it really doesn't cost you anything, but can certainly make you code more specific in its intent.

Philosophy Object/Properties Parameter Query

I'm looking at some code I've written and thinking "should I be passing that object into the method or just some of its properties?".
Let me explain:
This object has about 15 properties - user inputs. I then have about 10 methods that use upto 5 of these inputs. Now, the interface looks a lot cleaner, if each method has 1 parameter - the "user inputs object". But each method does not need all of these properties. I could just pass the properties that each method needs.
The fact I'm asking this question indicates I accept I may be doing things wrong.
Discuss......:)
EDIT: To add calrity:
From a web page a user enters details about their house and garden. Number of doors, number of rooms and other properties of this nature (15 in total).
These details are stored on a "HouseDetails" object as simple integer properties.
An instance of "HouseDetails" is passed into "HouseRequirementsCalculator". This class has 10 private methods like "calculate area of carpet", "caclulateExtensionPotential" etc.
For an example of my query, let's use "CalculateAreaOfCarpet" method.
should I pass the "HouseDetails" object
or should I pass "HouseDetails.MainRoomArea, HouseDetails.KitchenArea, HouseDetails.BathroomArea" etc
Based on my answer above and related to your edit:
a) You should pass the "HouseDetails"
object
Other thoughts:
Thinking more about your question and especially the added detail i'm left wondering why you would not just include those calculation methods as part of your HouseDetails object. After all, they are calculations that are specific to that object only. Why create an interface and another class to manage the calculations separately?
Older text:
Each method should and will know what part of the passed-in object it needs to reference to get its job done. You don't/shouldn't need to enforce this knowledge by creating fine-grained overloads in your interface. The passed-in object is your model and your contract.
Also, imagine how much code will be affected if you add and remove a property from this object. Keep it simple.
Passing individual properties - and different in each case - seems pretty messy. I'd rather pass whole objects.
Mind that you gave not enough insight into your situation. Perhaps try to describe the actual usage of this things? What is this object with 15 properties?, are those "10 methods that use upto 5 of these input" on the same object, or some other one?
After the question been edited
I should definitely go with passing the whole object and do the necessary calculations in the Calculator class.
On the other hand you may find Domain Driven Design an attractive alternative (http://en.wikipedia.org/wiki/Domain-driven_design). With regard to that principles you could add methods from calculator to the HouseDetails class. Domain Driven Design is quite nice style of writing apps, just depends how clean this way is for you.

Resources