how to Compare two fields in ElasticSearch - elasticsearch

I need to compare two fields in Elasticsearch. I tried with below query using Kibana. But it's a gave runtime exception. Kindly help me how to compare these fields.
GET /eps/_search
{
"query": {
"bool" : {
"filter" : {
"script" : {
"script" : {
"source": "doc['output_record_count'].value < doc['input_record_count'].value",
"lang" : "painless"
}
}
}
}
}
}
Note:
For complete Match query I am getting below success response.
Query:
GET /eps/_search
{
"query": {
"match_all": {}
}
}
The Response is :
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "eps",
"_type" : "_doc",
"_id" : "9bNkeXEBLNJ-eURYKdv1",
"_score" : 1.0,
"_source" : {
"experience" : "EPS",
"#version" : "1",
"sdcids" : "013bb234-0840-11ea-8e7d-515f88cf3efa",
"output_record_count" : 13,
"input_record_count" : 10,
"#timestamp" : "2020-04-14T15:52:19.582Z",
"SDC_Ids" : "013bb234-0840-11ea-8e7d-515f88cf3efa"
}
}
]
}
}

Related

elasticsearch reducing result to one column - return only 1 value for each document

I try to reduce the json result of elasticsearch to only the column or columns i suggested to get. Is there any way?
When I use the following command, I get the result nasted into "_source":
{
"from": "0", "size":"2",
"_source":["id"],
"query": {
"match_all": {}
}
}
'
and there is no need for my use case.
I get this result:
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "indexer_1",
"_type" : "type_indexer_1",
"_id" : "38142",
"_score" : 1.0,
"_source" : {
"id" : 38142
}
},
{
"_index" : "indexer_1",
"_type" : "type_indexer_1",
"_id" : "38147",
"_score" : 1.0,
"_source" : {
"id" : 38147
}
}
]
}
}
What I would like to have:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : 1.0,
"hits" : [
{
"id" : 38142
},
{
"id" : 38147
}
]
}
}
And this json-result I would love:
{
{
"id" : 38142
},
{
"id" : 38147
}
}
Is there any way out of the box in ES to reduce the result set?
you can filter the output JSON look at the documentation : response filtering
GET /index/_search?filter_path=hits.hits._id
{
"from": "0",
"size":"2",
"_source":["id"],
"query": {
"match_all": {}
}
}

Null field in elasticsearch need to be replaced

How can i replace the "build_duration" : "null", with value 21600000 in elasticsearch?
DevTools > Console
GET myindex/_search
{
"query": {
"term": {
"build_duration": "null"
}
}
}
Output:-
{
"took" : 10,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 9.658761,
"hits" : [
{
"_index" : "myindex",
"_type" : "_doc",
"_id" : "40324749",
"_score" : 9.658761,
"_source" : {
"build_duration" : "null",
"build_end_time" : "2021-05-20 04:00:36",
"build_requester" : "daniel.su",
"build_site" : "POL",
"build_id" : "40324749",
"#version" : "1"
}
}
]
}
}
With below query able to replace the filed value.
POST /myindex/_update/mydocid
{
"doc" : {
"build_duration": "21600000"
}
}

No matches when querying Elastic Search

I'm trying to run a query elastic search. When run this query
GET accounts/_search/
{
"query": {
"term": {
"address_line_1": "1000"
}
}
}
I get back multiple records like
"hits" : [
{
"_index" : "accounts",
"_type" : "_doc",
"_id" : "...",
"_score" : 8.355149,
"_source" : {
"state_id" : 35,
"first_name" : "...",
"last_name" : "...",
"middle_name" : "P",
"dob" : "...",
"status" : "ACTIVE",
"address_line_1" : "1000 BROADROCK CT",
"address_line_2" : "",
"address_city" : "PARMA",
"address_zip" : "",
"address_zip_plus_4" : ""
}
},
But when I try to expand it to include the more like below I don't get any matches
GET accounts/_search/
{
"query": {
"term": {
"address_line_1": "1000 B"
}
}
}
The response is
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 0,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
}
}
The term query is looking for exact matches. Your address_line_* fields were most probably indexed with the standard analyzer which lowercase-s all the letters which in turn prevents the query from matching.
So either use
GET accounts/_search/
{
"query": {
"match": { <--
"address_line_1": "1000 B"
}
}
}
which does not really 'care' about B being lower/upper case or adjust your field analyzers such that the capitalization is preserved.

How can i extend an elastic search date range histogram aggregation query?

Hi I have an elastic search index named mep-report.
Each document has a status field. The possible values for status fields are "ENROUTE", "SUBMITTED", "DELIVERED", "FAILED" . Below is the sample elastic search index with 6 documents.
{
"took" : 10,
"timed_out" : false,
"_shards" : {
"total" : 13,
"successful" : 13,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1094313,
"max_score" : 1.0,
"hits" : [
{
"_index" : "mep-reports-2019.09.11",
"_type" : "doc",
"_id" : "68e8e03f-baf8-4bfc-a920-58e26edf835c-353899837500",
"_score" : 1.0,
"_source" : {
"status" : "ENROUTE",
"#timestamp" : "2019-09-11T10:21:26.000Z"
},
{
"_index" : "mep-reports-2019.09.11",
"_type" : "doc",
"_id" : "68e8e03f-baf8-4bfc-a920-58e26edf835c-353899837501",
"_score" : 1.0,
"_source" : {
"status" : "ENROUTE",
"#timestamp" : "2019-09-11T10:21:26.000Z"
},
{
"_index" : "mep-reports-2019.09.11",
"_type" : "doc",
"_id" : "68e8e03f-baf8-4bfc-a920-58e26edf835c-353899837502",
"_score" : 1.0,
"_source" : {
"status" : "SUBMITTED",
"#timestamp" : "2019-09-11T10:21:26.000Z"
}
},
{
"_index" : "mep-reports-2019.09.11",
"_type" : "doc",
"_id" : "68e8e03f-baf8-4bfc-a920-58e26edf835c-353899837503",
"_score" : 1.0,
"_source" : {
"status" : "DELIVERED",
"#timestamp" : "2019-09-11T10:21:26.000Z"
}
},
{
"_index" : "mep-reports-2019.09.11",
"_type" : "doc",
"_id" : "68e8e03f-baf8-4bfc-a920-58e26edf835c-353899837504",
"_score" : 1.0,
"_source" : {
"status" : "FAILED",
"#timestamp" : "2019-09-11T10:21:26.000Z"
},
{
"_index" : "mep-reports-2019.09.11",
"_type" : "doc",
"_id" : "68e8e03f-baf8-4bfc-a920-58e26edf835c-353899837504",
"_score" : 1.0,
"_source" : {
"status" : "FAILED",
"#timestamp" : "2019-09-11T10:21:26.000Z"
}
}
}
I would like to find an aggregation histogram distribution something like to get messages_processed, message_delivered,messages_failed .
messages_processed : 3 ( 2 documents in status ENROUTE + 1 Document with status SUBMITTED )
message_delivered 1 ( 1 document with status DELIVERED )
messages_failed : 2 ( 2 documents with status FAILED )
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 13,
"successful" : 13,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 21300,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"performance_over_time" : {
"buckets" : [
{
"key_as_string" : "2020-02-21",
"key" : 1582243200000,
"doc_count" : 6,
"message_processed": 3,
"message_delivered": 1,
"message_failed": 2
}
]
}
}
}
So the following is my current query and i would like to modify it to get some additional statistics such as message_processed , message_delivered, message_failed. kindly let me know .
{ "size": 0, "query": { "bool": { "must": [ { "range": { "#timestamp": { "from": "2020-02-21T00:00Z", "to": "2020-02-21T23:59:59.999Z", "include_lower": true, "include_upper": true, "format": "yyyy-MM-dd'T'HH:mm:ss.SSSZ ||yyyy-MM-dd'T'HH:mmZ", "boost": 1.0 } } } ], "adjust_pure_negative": true, "boost": 1.0 } }, "aggregations": { "performance_over_time": { "date_histogram": { "field": "#timestamp", "format": "yyyy-MM-dd", "interval": "1d", "offset": 0, "order": { "_key": "asc" }, "keyed": false, "min_doc_count": 0 } } } }
You are almost there with the query, you just need to add Terms Aggregation and looking at your request, I've come up with a Scripted Terms Aggregation.
I've also modified the date histogram aggregation field interval to calendar_interval so that you get the values as per the calendar date.
Query Request:
POST <your_index_name>/_search
{
"size": 0,
"query":{
"bool":{
"must":[
{
"range":{
"#timestamp":{
"from":"2019-09-10",
"to":"2019-09-12",
"include_lower":true,
"include_upper":true,
"boost":1.0
}
}
}
],
"adjust_pure_negative":true,
"boost":1.0
}
},
"aggs":{
"message_processed":{
"date_histogram": {
"field": "#timestamp",
"calendar_interval": "1d" <----- Note this
},
"aggs": {
"my_messages": {
"terms": {
"script": { <----- Core Logic of Terms Agg
"source": """
if(doc['status'].value=="ENROUTE" || doc['status'].value == "SUBMITTED"){
return "message_processed";
}else if(doc['status'].value=="DELIVERED"){
return "message_delivered"
}else {
return "message_failed"
}
""",
"lang": "painless"
},
"size": 10
}
}
}
}
}
}
Note that the core logic what you are looking for is inside the scripted terms aggregation. Logic is self explainable if you go through it. Feel free to modify the logic that fits you.
For the sample date you've shared, you would get the result in the below format:
Response:
{
"took" : 144,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 6,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"message_processed" : {
"buckets" : [
{
"key_as_string" : "2019-09-11T00:00:00.000Z",
"key" : 1568160000000,
"doc_count" : 6,
"my_messages" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "message_processed",
"doc_count" : 3
},
{
"key" : "message_failed",
"doc_count" : 2
},
{
"key" : "message_delivered",
"doc_count" : 1
}
]
}
}
]
}
}
}

Search by text field

Here is my index:
λ curl -XGET -u elastic:elasticpassword http://192.168.1.71:9200/test/mytype/_search?pretty -d'{"query":{"match_all":{}}}'
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 2,
"max_score" : 1.0,
"hits" : [
{
"_index" : "test",
"_type" : "mytype",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "Dio",
"age" : 10
}
},
{
"_index" : "test",
"_type" : "mytype",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "Paul",
"pro" : {
"f" : "Cris",
"t" : "So"
}
}
}
]
}
}
Here is a default mapping:
λ curl -XGET -u elastic:elasticpassword http://192.168.1.71:9200/test/mytype/_mapping?pretty
{
"test" : {
"mappings" : {
"mytype" : {
"properties" : {
"age" : {
"type" : "long"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
I can find by age field, but cannot by name field. Why ?
λ curl -XGET -u elastic:elasticpassword http://192.168.1.71:9200/test/mytype/_search?pretty -d'{"query":{"term":{"age":10}}}'
{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 1.0,
"hits" : [
{
"_index" : "test",
"_type" : "mytype",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "Dio",
"age" : 10
}
}
]
}
}
λ curl -XGET -u elastic:elasticpassword http://192.168.1.71:9200/test/mytype/_search?pretty -d'{"query":{"term":{"name":"Paul"}}}'
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 0,
"max_score" : null,
"hits" : [ ]
}
}
The problem is that you name field is analyzed by default with the standard analyzer, which lowercases the field. You can either search for paul or search in name.keyword field with Paul.

Resources