I am looking for a best way to search parent documents along with counts for associated child document? Example :
We have Organization documents and User documents. There could be thousands of users belong to one particular organization.
Organization document :
{
"id" : "001"
"name" : "orgname1"
}
{
"id" : "002"
"name" : "orgname2"
}
Users documents :
{
"id" : "testusr1"
"name" : "xyz1"
"orgId" : "001"
},
{
"id" : "testusr2"
"name" : "xyz2"
"orgId" : "001"
}
{
"id" : "testusr3"
"name" : "xyz3"
"orgId" : "001"
}
{
"id" : "testusr4"
"name" : "xyz4"
"orgId" : "001"
}
{
"id" : "testusr5"
"name" : "xyz5"
"orgId" : "002"
}
{
"id" : "testusr6"
"name" : "xyz6"
"orgId" : "002"
}
In above example, we have 4 users associated with organization with 001 and 2 users associated with 002. So on front end, admin will search for organization and as a result, I want to give response along with users count for that organization.
You can solve you issue in three ways. Each have its own advantages and disadvantages
1. Index Parent and child separately
This will require two queries . First you need to query user index and get orgId and then query child index and get its count
Advantage.
Change in one index doesn't affect other index
Disadvantage .
You need to use two queries
2. Nested Documents
Mapping:
PUT index9
{
"mappings": {
"properties": {
"id":{
"type": "integer"
},
"name":{
"type": "text",
"fields": {
"keyword":{
"type":"keyword"
}
}
},
"user":{
"type": "nested",
"properties": {
"id":{
"type":"text",
"fields":{
"keyword":{
"type":"keyword"
}
}
},
"name":{
"type":"text",
"fields":{
"keyword":{
"type":"keyword"
}
}
}
}
}
}
}
}
POST index9/_doc
{
"id" : 1,
"name" : "orgname1",
"user":[
{
"id":"testuser1",
"name":"xyz1"
},
{
"id":"testuser2",
"name":"xyz2"
}
]
}
Query:
GET index9/_search
{
"query": {
"match_all": {}
},
"aggs": {
"organization": {
"terms": {
"field": "id",
"size": 10
},
"aggs": {
"user": {
"nested": {
"path": "user"
},
"aggs": {
"count": {
"value_count": {
"field": "user.id.keyword"
}
}
}
}
}
}
}
}
Result:
"aggregations" : {
"organization" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 1,
"doc_count" : 1,
"user" : {
"doc_count" : 2,
"count" : {
"value" : 2
}
}
}
]
}
}
Nested are faster compared to parent/child,
Nested docs require reindexing the parent with all its children, while parent child allows to reindex / add / delete specific children.
3. Parent Child Relationship
Mapping
{
"my_index" : {
"mappings" : {
"properties" : {
"id" : {
"type" : "keyword"
},
"my_join_field" : {
"type" : "join",
"eager_global_ordinals" : true,
"relations" : {
"organization" : "user"
}
},
"name" : {
"type" : "text"
},
"orgId" : {
"type" : "long"
}
}
}
}
Data:
POST my_index/_doc/1
{
"id": 1,
"name" : "orgname1",
"my_join_field": "organization"
}
POST my_index/_doc/2
{
"id" : 2,
"name" : "orgname2",
"my_join_field": "organization"
}
POST my_index/_doc/3?routing=1
{
"id": "testusr1",
"name": "xyz1",
"orgId": 1,
"my_join_field": {
"name": "user",
"parent": 1
}
}
POST my_index/_doc/4?routing=2
{
"id" : "testusr5",
"name" : "xyz5",
"orgId" : 1,
"my_join_field": {
"name": "user",
"parent": 2
}
}
POST my_index/_doc/5?routing=2
{
"id" : "testusr6",
"name" : "xyz6",
"orgId" : 2,
"my_join_field": {
"name": "user",
"parent": 2
}
}
Query:
{
"query": {
"has_child": {
"type": "user",
"query": { "match_all": {} }
}
},
"aggs": {
"organization": {
"terms": {
"field": "id",
"size": 10
},
"aggs": {
"user": {
"children": {
"type": "user"
},
"aggs": {
"count": {
"value_count": {
"field": "id"
}
}
}
}
}
}
}
}
Result:
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"id" : 1,
"name" : "orgname1",
"my_join_field" : "organization"
}
},
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"id" : 2,
"name" : "orgname2",
"my_join_field" : "organization"
}
}
]
},
"aggregations" : {
"organization" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1",
"doc_count" : 1,
"user" : {
"doc_count" : 1,
"count" : {
"value" : 1
}
}
},
{
"key" : "2",
"doc_count" : 1,
"user" : {
"doc_count" : 2,
"count" : {
"value" : 2
}
}
}
]
}
Benefits:
1. Parent document and children are separate documents
Parent and child can be updated separately without re-indexing the other
It is useful when child documents are large in number and need to be added or
changed frequently.
Child documents can be returned as the results of a search request.
Related
My documents stored in elasticsearch have following structure:
{
"id": 1,
"test": "name",
"rules": [
{
"id": 2,
"name": "rule1",
"ruleDetails": [
{
"id": 3,
"requiredAnswerId": 1
},
{
"id": 4,
"requiredAnswerId": 2
},
{
"id": 5,
"requiredAnswerId": 3
}
]
}
]
}
where, rules property has nested type.
I need to query documents by checking that array of requiredAnswerId passed in the search request (provided terms) contains all rules.ruleDetails.requiredAnswerId stored in the document.
Does anyone know which elasticsearch option I can use to build such specific query? Or maybe, it is better to fetch the whole document and perform filtering on the application level.
UPDATED
Adding mapping
{
"my_index": {
"mappings": {
"properties": {
"id": {
"type": "long"
},
"test": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"rules": {
"type": "nested",
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"ruleDetails": {
"properties": {
"id": {
"type": "long"
},
"requiredAnswerId": {
"type": "long"
}
}
}
}
}
}
}
}
}
Mapping:
{
"index4" : {
"mappings" : {
"properties" : {
"id" : {
"type" : "integer"
},
"rules" : {
"type" : "nested",
"properties" : {
"id" : {
"type" : "integer"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword"
}
}
},
"ruleDetails" : {
"properties" : {
"id" : {
"type" : "long"
},
"requiredAnswerId" : {
"type" : "long"
}
}
}
}
},
"test" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword"
}
}
}
}
}
}
}
Query: This will need use of scripts which are not good from performance perspective. I am looping through all documents and checking if field is present is passed parameters
{
"query": {
"nested": {
"path": "rules",
"query": {
"script": {
"script": {
"source": "for(a in doc['rules.ruleDetails.requiredAnswerId']){if(!params.Ids.contains((int)a)) return false; } return true;",
"params": {
"Ids": [
1,
2,
3
]
}
}
}
},
"inner_hits": {}
}
}
}
Result:
"hits" : [
{
"_index" : "index4",
"_type" : "_doc",
"_id" : "TxOpvnEBf42mOjxvvLQB",
"_score" : 4.0,
"_source" : {
"id" : 1,
"test" : "name",
"rules" : [
{
"id" : 2,
"name" : "rule1",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
},
{
"id" : 5,
"requiredAnswerId" : 3
}
]
},
{
"id" : 3,
"name" : "rule3",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
}
]
}
]
},
"inner_hits" : {
"rules" : {
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 4.0,
"hits" : [
{
"_index" : "index4",
"_type" : "_doc",
"_id" : "TxOpvnEBf42mOjxvvLQB",
"_nested" : {
"field" : "rules",
"offset" : 0
},
"_score" : 4.0,
"_source" : {
"id" : 2,
"name" : "rule1",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
},
{
"id" : 5,
"requiredAnswerId" : 3
}
]
}
}
]
}
}
}
}
]
EDIT 1
Terms_set can be used as an alternative. It will be faster compared to script query
Returns documents that contain a minimum number of exact terms in a
provided field.
minimum_should_match_script- size of array can be used to match the minimum number of passed values.
Query:
{
"query": {
"nested": {
"path": "rules",
"query": {
"bool": {
"filter": {
"terms_set": {
"rules.ruleDetails.requiredAnswerId": {
"terms": [
1,
2,
3
],
"minimum_should_match_script": {
"source": "doc['rules.ruleDetails.requiredAnswerId'].size()"
}
}
}
}
}
},
"inner_hits": {}
}
}
}
After some time playing with ES and reading its documentation, I found that you should keep in mind that provided script should be compiled and applied for the document, hence it will be slower, if you just know the required number elements that should match in advance.
Therefore, I created a separate field requiredMatches that stores the number of rules.ruleDetails.requiredAnswerId elements for every document and calculate it before indexing document. Then, instead of using minimum_should_match_script in my search query, I am using minimum_should_match_field:
{
"query": {
"nested": {
"path": "rules",
"query": {
"bool": {
"filter": {
"terms_set": {
"rules.ruleDetails.requiredAnswerId": {
"terms": [
1,
2,
3
],
"minimum_should_match_field": "requiredMatches"
}
}
}
}
},
"inner_hits": {}
}
}
}
I used, following example, as a reference
I didn't find any answers how to do simple thing in ElasticSearch 6.8 I need to filter nested objects.
Index
{
"settings": {
"index": {
"number_of_shards": "5",
"number_of_replicas": "1"
}
},
"mappings": {
"human": {
"properties": {
"cats": {
"type": "nested",
"properties": {
"name": {
"type": "text"
},
"breed": {
"type": "text"
},
"colors": {
"type": "integer"
}
}
},
"name": {
"type": "text"
}
}
}
}
}
Data
{
"name": "iridakos",
"cats": [
{
"colors": 1,
"name": "Irida",
"breed": "European Shorthair"
},
{
"colors": 2,
"name": "Phoebe",
"breed": "european"
},
{
"colors": 3,
"name": "Nino",
"breed": "Aegean"
}
]
}
select human with name="iridakos" and cats with breed contains 'European' (ignore case).
Only two cats should be returned.
Million thanks for helping.
For nested datatypes, you would need to make use of nested queries.
Elasticsearch would always return the entire document as a response. Note that nested datatype means that every item in the list would be treated as an entire document in itself.
Hence in addition to return entire document, if you also want to know the exact hits, you would need to make use of inner_hits feature.
Below query should help you.
POST <your_index_name>/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "iridakos"
}
},
{
"nested": {
"path": "cats",
"query": {
"match": {
"cats.breed": "european"
}
},
"inner_hits": {}
}
}
]
}
}
}
Response:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 0.74455214,
"hits" : [
{
"_index" : "my_cat_index",
"_type" : "_doc",
"_id" : "1", <--- The document that hit
"_score" : 0.74455214,
"_source" : {
"name" : "iridakos",
"cats" : [
{
"colors" : 1,
"name" : "Irida",
"breed" : "European Shorthair"
},
{
"colors" : 2,
"name" : "Phoebe",
"breed" : "european"
},
{
"colors" : 3,
"name" : "Nino",
"breed" : "Aegean"
}
]
},
"inner_hits" : { <---- Note this
"cats" : {
"hits" : {
"total" : {
"value" : 2, <---- Count of nested doc hits
"relation" : "eq"
},
"max_score" : 0.52354836,
"hits" : [
{
"_index" : "my_cat_index",
"_type" : "_doc",
"_id" : "1",
"_nested" : {
"field" : "cats",
"offset" : 1
},
"_score" : 0.52354836,
"_source" : { <---- First Nested Document
"breed" : "european"
}
},
{
"_index" : "my_cat_index",
"_type" : "_doc",
"_id" : "1",
"_nested" : {
"field" : "cats",
"offset" : 0
},
"_score" : 0.39019167,
"_source" : { <---- Second Document
"breed" : "European Shorthair"
}
}
]
}
}
}
}
]
}
}
Note in your response how the inner_hits section would appear where you would find the exact hits.
Hope this helps!
You could use something like this:
{
"query": {
"bool": {
"must": [
{ "match": { "name": "iridakos" }},
{ "match": { "cats.breed": "European" }}
]
}
}
}
To search on a cat's breed, you can use the dot-notation.
I am currently doing a fuzzy name search on some documents. These documents can be related to each other (for example name field of one document may contain the name and another may contain the alias for the same person). I will give these documents the same unique identifier. My question is, can I get the documents with same unique identifier if a match occurs in any of them?
Suppose that there are 4 documents like this.
{
{
"name": "Bob"
"uid": "1"
},
{
"name": "Bilbo"
"uid": "1"
},
{
"name": "Jack"
"uid": "2"
},
{
"name": "Mary"
"uid" : "3"
}
}
When I query name "Bob", I expect to get both documents with "uid" = "1"
{
{
"name": "Bob"
"uid": "1"
},
{
"name": "Bilbo"
"uid": "1"
}
}
Elasticsearch doesn't have concept of JOINS. So documents cannot be fetched by joining on "uid"
1. Using two queries
i. Get documents with name "Bob"
{
"query": {
"term": {
"name.keyword": {
"value": "Bob"
}
}
}
}
ii. Fetch documents using above returned ids.
2. Using terms and bucket selector aggregation
Mapping:
{
"<mapping_name>" : {
"mappings" : {
"properties" : {
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"uid" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
Query:
1. Create a bucket(collection) of uid.
2. Create sub bucket of name which includes only "Bob" so uid 1 will have a bucket of key Bob , uid 2 will be empty
3. Use bucket_selector aggregation to select where count of sub bucket name is greater than equal to 1. This will remove uid 2
4. Use top_hits aggregation to get documents.
{
"size": 0,
"aggs": {
"uid": {
"terms": {
"field": "uid.keyword",
"size": 10
},
"aggs": {
"documents":{
"top_hits": { --> to get documents under parent term
"size": 10
}
},
"name": {
"terms": {
"field": "name.keyword", --> terms need non_analyzed field so keyword
"include":"Bob", --> get terms with name bob
"size": 10
}
},
"my_bucket":{
"bucket_selector": { --> select buckets which have atleast one name
"buckets_path": {"count":"name._bucket_count"},
"script": "if(params.count>=1) return true;"
}
}
}
}
}
}
Result: All docuents with uid 1(same uid as "Bob") are returned
"aggregations" : {
"uid" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1",
"doc_count" : 2,
"documents" : {
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "index61",
"_type" : "_doc",
"_id" : "uCP1-nAB_Wo5RvhlZM6k",
"_score" : 1.0,
"_source" : {
"name" : "Bob",
"uid" : "1"
}
},
{
"_index" : "index61",
"_type" : "_doc",
"_id" : "uSP1-nAB_Wo5Rvhlbc4S",
"_score" : 1.0,
"_source" : {
"name" : "Bilbo",
"uid" : "1"
}
}
]
}
},
"name" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Bob",
"doc_count" : 1
}
]
}
}
]
}
}
It's a bit hard for me to define the question as I'm not very experienced with Elasticsearch. I'm focusing the question on my specific problem:
Assuming I have the following records:
{
id: 1
name: bla1_1.aaa
},
{
id: 1
name: bla1_2.bbb
},
{
id: 2
name: bla2_1.aaa
},
{
id: 2
name: bla2_2.aaa
}
What I want is to GET all the ids that have all of their names ending with aaa.
I was thinking about group by id and then do a regex query like so: *\.aaa so that all the name must satisfy the regex query.
On this particular example I would get id: 2 back.
How do I do it?
Let me know if there's anything I need to add to clarify the question.
RegexExp can be used.
Wildcard .* matches any character any number of times including zero
Terms aggregation will give you unique "ids" and number of docs under them.
Mapping :
PUT regex
{
"mappings": {
"properties": {
"id":{
"type":"integer"
},
"name":{
"type":"text",
"fields": {
"keyword":{
"type":"keyword"
}
}
}
}
}
}
Data:
"hits" : [
{
"_index" : "regex",
"_type" : "_doc",
"_id" : "olQXjW0BywGFQhV7k84P",
"_score" : 1.0,
"_source" : {
"id" : 1,
"name" : "bla1_1.aaa"
}
},
{
"_index" : "regex",
"_type" : "_doc",
"_id" : "o1QXjW0BywGFQhV7us6B",
"_score" : 1.0,
"_source" : {
"id" : 1,
"name" : "bla1_2.bbb"
}
},
{
"_index" : "regex",
"_type" : "_doc",
"_id" : "pFQXjW0BywGFQhV77c6J",
"_score" : 1.0,
"_source" : {
"id" : 2,
"name" : "bla2_1.aaa"
}
},
{
"_index" : "regex",
"_type" : "_doc",
"_id" : "pVQYjW0BywGFQhV7Dc6F",
"_score" : 1.0,
"_source" : {
"id" : 2,
"name" : "bla2_2.aaa"
}
}
]
Query:
GET regex/_search
{
"size":0,
"query": {
"regexp": {
"name.keyword": {
"value": ".*.aaa" ---> name ending with .aaa
}
}
},
"aggs": {
"unique_ids": {
"terms": {
"field": "id",
"size": 10
}
}
}
}
Result:
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"unique_ids" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 2, ---> 2 doc under id 2
"doc_count" : 2
},
{
"key" : 1, ----> 1 doc under id 1
"doc_count" : 1
}
]
}
}
Edit:
Using bucket selector to keep buckets where total count of docs in Id matches with docs selected in regex
GET regex/_search
{
"size": 0,
"aggs": {
"unique_ids": {
"terms": {
"field": "id",
"size": 10
},
"aggs": {
"totalCount": { ---> to get total count of id(all docs)
"value_count": {
"field": "id"
}
},
"filter_agg": {
"filter": {
"bool": {
"must": [
{
"regexp": {
"name.keyword": ".*.aaa"
}
}
]
}
},
"aggs": {
"finalCount": { -->total count of docs matching regex
"value_count": {
"field": "id"
}
}
}
},
"mybucket_selector": { ---> include buckets where totalcount==finalcount
"bucket_selector": {
"buckets_path": {
"FinalCount": "filter_agg>finalCount",
"TotalCount": "totalCount"
},
"script": "params.FinalCount==params.TotalCount"
}
}
}
}
}
}
Consider a document (post) like this in elasticsearch index:
{
title: "I love ice cream!"
comments: [
{
body: "me too!",
reaction: 'positive',
likes: 20
},
{
body: "huh!",
reaction: 'sarcastic',
likes: 5
}
]
}
The comments is a field of nested type.
How can elastic answer this:
Give me all posts, where the total sum of likes on "sarcastic" comments is greater than 100.
I'm open to any other way of modelling data which helps answer such queries.
This can be solved using bucket selector aggregation.
Mapping:
{
"index1" : {
"mappings" : {
"properties" : {
"comments" : {
"type" : "nested",
"properties" : {
"body" : {
"type" : "text"
},
"likes" : {
"type" : "integer"
},
"reaction" : {
"type" : "text"
}
}
},
"title" : {
"type" : "keyword"
}
}
}
}
}
Data:
"hits" : [
{
"_index" : "index1",
"_type" : "_doc",
"_id" : "p0y9DGsBfPdKzuAGdQrm",
"_score" : 1.0,
"_source" : {
"title" : "I love ice cream!",
"comments" : [
{
"body" : "me too!",
"reaction" : "positive",
"likes" : 20
},
{
"body" : "huh!",
"reaction" : "sarcastic",
"likes" : 5
}
]
}
},
{
"_index" : "index1",
"_type" : "_doc",
"_id" : "qEy9DGsBfPdKzuAGnwox",
"_score" : 1.0,
"_source" : {
"title" : "I hate ice cream!",
"comments" : [
{
"body" : "me too!",
"reaction" : "positive",
"likes" : 10
},
{
"body" : "huh!",
"reaction" : "sarcastic",
"likes" : 5
}
]
}
}
]
}
Query:
GET index1/_search
{
"size": 0,
"aggs": {
"title": {
"terms": {
"field": "title"
},
"aggs": {
"comments": {
"nested": {
"path": "comments"
},
"aggs": {
"reaction": {
"filter": {
"term": {
"comments.reaction": "positive"
}
},
"aggs": {
"total_likes": {
"sum": {
"field": "comments.likes"
}
}
}
}
}
},
"total_likes_filter": {
"bucket_selector": {
"buckets_path": {
"likes": "comments>reaction>total_likes"
},
"script": "params.likes > 15"
}
}
}
}
}
}
Result:
"aggregations" : {
"title" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "I love ice cream!",
"doc_count" : 1,
"comments" : {
"doc_count" : 2,
"reaction" : {
"doc_count" : 1,
"total_likes" : {
"value" : 20.0
}
}
}
}
]
}
}
}
Bucket contains only "I love ice cream!" where total likes for reaction positive is greater than 20.
I hate ice cream! has total sum 5 for positive reaction so it is not included.