I have a DAX formula that is performing really bad and hopefully someone here can suggest a solution.
I have a table that contains about 400000 rows of data. ProductID's (example field), startdate, enddate and an IsActive flag field. The data out of this table should be reported in several ways. In some reports I want to see all of the active products within a selected period of time and in other reports, I only want to see the number of products that were active on the last day of the month.
So, I have created two DAX queries to calculate this.
First I calculate the active products:
_Calc_Count Fields :=
CALCULATE (
DISTINCTCOUNT ( MyFactTable[ProductID] ),
FILTER (
MyFactTable,
MyFactTable[StartDate] <= CALCULATE ( MAX ( 'Date'[Date] ) )
&& MyFactTable[EndDate] >= CALCULATE ( MIN ( 'Date'[Date] ) )
),
MyFactTable[IsActive] = 1
)
Please be aware of the fact that the report this calculation is used in can also contain a date range (even a whole year (or multiple years) can be selected with a startdate and enddate selected in the filter). The report also slices on other filters like Client Group.
Then I have a second calculation that uses the first one and applies the LASTNONBLANK function:
Last Non Blank Value :=
CALCULATE (
[_Calc_Count Fields],
LASTNONBLANK ( 'Date'[Date], [_Calc_Count Fields] )
)
Both calculations are very, very slow.
Can anyone suggest a better approach? Can the DAX formula be optimized or should it completely be rewritten?
ps. I am using Analysis Services Tabular Model.
Thank you all in advance for your responses!
there are many points to consider for optimizing.
First of all, you need to understand where is the bottleneck.
I would do three separate preliminary tests:
A) change the DISTINCTCOUNT with a simple COUNT
B) Remove the FILTER
C) Remove the IsActive
Then you can understand where to prioritize your effort, however there are some very simple general optimization you can do anyway:
1.Make use of variables, therefore the formula becomes:
_Calc_Count Fields 3:=
VAR _startdate = CALCULATE ( MAX ( 'Date'[Date] ) )
VAR _enddate = CALCULATE ( MIN ( 'Date'[Date] ) )
RETURN
CALCULATE (
DISTINCTCOUNT ( MyFactTable[ProductID] ),
FILTER (
MyFactTable,
MyFactTable[StartDate] <= _startdate
&& MyFactTable[EndDate] >= _enddate
),
MyFactTable[IsActive] = 1
)
2.If you use as first parameter of FILTER an entire Fact Table, Storage Engine will load in memory the Expanded Table which is very expensive. Therefore, as a second step the formula should become:
_Calc_Count Fields 2:=
VAR _startdate = CALCULATE ( MAX ( 'Date'[Date] ) )
VAR _enddate = CALCULATE ( MIN ( 'Date'[Date] ) )
RETURN
CALCULATE (
DISTINCTCOUNT ( MyFactTable[ProductID] ),
MyFactTable[StartDate] <= _startdate && MyFactTable[EndDate] >= _enddate,
MyFactTable[IsActive] = 1
)
Next, based on the preliminary test you can decide where to invest your effort.
The issue is the DISTINCTCOUNT:
- explore some alternative algorithms for approximating DISTINCTCOUNT (HIGH EFFORT)
- try to sort in the data source (back-end) the table by ProductId to allow better compression in AAS
- make sure ProductId is a Integer Data type with Encoding Hint: Value
The issue is in the FILTER:
- Try to change the "&&" with "," (LOW EFFORT)
- Investigate the cardinality of StartDate and EndDate. If they are DateTime, remove the Time part. (LOW EFFORT)
- Try to change the datasource in the back-end and sort by useful fields (for example, StartDate asc, so when AAS will read the table might perform better compression (LOW EFFORT)
- Make sure StartDate and Date are Whole Number data types, with Encoding Hint: Value (LOW EFFORT)
Related
Overview of the table in question
I need to get a distinct count of the column Fkey_Dim_Resource_ID that has holiday to spare.
My Table consists of five columns:
Resource_Allocated_Holiday_ID (Primary Key)
Fkey_Dim_Resource_ID
Fkey_Dim_HolidayYear_ID
Fkey_Dim_Company_ID
Allocated_Holiday_Hrs_Qty
Measure:
Allocated Holiday (Hrs):= Var X= SUM([Allocated_Holiday_Hrs_Qty])
Return if(X =0; BLANK();X)
This measure below then uses the above, and the holiday spent from another metric:
Remaining Holiday (Hrs):= Var X = 'HolidayEntry Numbers'[Allocated Holiday (Hrs)] - [#Holiday Hours]
Return if(X=0;BLANK();X)
And now, I would like a metric that gives me the distinct count of Fkey_Dim_ResourceID where 'Remaining Holiday (hrs)' >0.
I have tried a lot of different stuff, but cannot seem to get it right.
test:=
ADDCOLUMNS(
SUMMARIZE('HolidayEntry Numbers'
;'HolidayEntry Numbers'[Fkey_Dim_Company_ID]
;'HolidayEntry Numbers'[Fkey_Dim_Resource_ID];
'HolidayEntry Numbers'[Fkey_Dim_HolidayYear_Id]
)
;"RemainingHoliday"; sum( [Remaining Holiday (Hrs)])
)
I would like for a distinct count of Fkey_Dim_Resource_ID that has holiday left, that takes into account the context.
Thanks in advance.
With this measure:
test4 virker når ressourcen er med:=COUNTROWS (
FILTER (
ADDCOLUMNS (
VALUES ( 'HolidayEntry
Numbers'[Fkey_Dim_Resource_ID]);
"remholiday"; CALCULATE ( [Remaining Holiday
(Hrs)] )
);
[remholiday] > 0
)
)
I get the following result:
Result of the advice1
So the metric works, when in the context of a Resource, but not when in the context of a Fkey_dim_holiday_Year_ID.
Thanks ion advance.
Resources with remaining holiday hours =
COUNTROWS ( // counts rows in a table
FILTER ( // returns a table, filtering based on predicate
// below is unique values of the column in context, as a
// one-column table
VALUES ( 'HolidayEntry Numbers'[Fkey_Dim_Resource_ID] ),
[Remaining Holiday (hrs)] > 0 // keep rows meeting this criterion
)
)
As a matter of style, you should fully qualify column names as 'Table'[Column], and never fully qualify measure references, i.e. don't prefix with table name. This conforms with all style guides I know, and helps to ensure your code is unambiguous (since both columns and measures are referenced in square brackets).
What if we need to aggregate (Sum) of a value group by two attributes in DAX. I wrote the following measure with Summarize function but it is very slow.
Reorder :=
SUMX (
SUMMARIZE (
TableA,
TableA[ProdID],
TableA[CustID],
"ReordersCount",
VAR VarInvoiceCount =
SUM ( TableA[InvoiceCount] )
RETURN
IF ( VarInvoiceCount > 0, VarInvoiceCount - 1, 0 )
),
[ReordersCount]
)
I also looked for SummarizeColumns but its not working in the report when I am applying other attributes slicers. May be I am missing something?
Looking for optimized solution. Many thanks in advance.
Consider the following approach:
First, create a measure for total number of invoices:
Total Invoice Count = SUM(TableA[InvoiceCount])
Second, create a measure to count a number of first-time invoices, which is simply a number of unique product-customer combinations in your table:
First Invoice Count =
COUNTROWS ( SUMMARIZE ( TableA, TableA[CustID], TableA[ProdID] ) )
Finally, the desired result is simply the difference of these two measures:
Reorder Count = [Total Invoice Count] - [First Invoice Count]
The formula will respond properly to all slicers and filters, and should be very fast because there are no nested iteration loops such as SUMX(SUMMARIZE()), no context transitions and no call-backs inside the loops caused by using IF statements (that's a bit of an advanced topic).
Of course, you can put everything in one measure using variables:
Reorder Count =
VAR Total_Invoice_Count = SUM(TableA[InvoiceCount])
VAR First_Invoice_Count = COUNTROWS ( SUMMARIZE ( TableA, TableA[CustID], TableA[ProdID] ) )
VAR Reorder_Count = Total_Invoice_Count - First_Invoice_Count
RETURN Reorder_Count
although personally I prefer to break measures down because individual measures are easier to understand and debug, and they might have their own use.
The above approach is very efficient, but it assumes that TableA contains only valid orders. If it also has cancellations, returns, etc., that might have zero or negative Invoice counts, then you will have to use a less efficient approach, such as:
Reorder Count =
SUMX (
SUMMARIZE ( TableA, TableA[CustID], TableA[ProdID] ),
VAR Reorder_Count = CALCULATE ( SUM ( TableA[Invoice] ) ) - 1
RETURN
IF ( Reorder_Count > 0, Reorder_Count, 0 )
)
or:
Reorder Count =
SUMX (
SUMMARIZE ( TableA, TableA[CustID], TableA[ProdID] ),
MAX(CALCULATE ( SUM ( TableA[Invoice] ) ) - 1, 0) )
Nevertheless, they should be still faster than your original formula.
I'm working on some calculations for capital budgeting, and I have the following two tables in my data model
I'm trying to build out a calculated column in DAX to determine the payback period for each project in the Project table. I've put together the calculation here, I'm just not sure exactly how to execute this in DAX.
Logical Steps for Calculating Payback Period:
For each Project, find the cumulative sum for each date for relevant metrics (Include OpEx Savings and OpEx Implementation Cost, but not Revenue or Working Capital)
Find the MIN date where cumulative sum is greater than zero (the "break-even" date")
Find the MIN date with non-zero implementation cost ("Investment date")
Find the difference (in months) between #2 and #3 to determine payback period
EDIT:
The answer for the listed project is 7 months. I've built an intermediate table in Excel to develop the answer, but I'd like to be able to do this directly in a PowerPivot table with DAX.
I've produced this as a solution:
Create values, which makes sure cost are - and savings are + (ValCorr)
Create a running sum (RunningSum)
Find Investment Date (InvestmentDate)
Find Breakeven Date (BreakEvenDate)
Find Difference (Payback)
DAX:
RunningSum =
CALCULATE(SUM(Impacts[ValCorr]);
FILTER(
ALL(Impacts);
Impacts[ProjectID] = EARLIER(Impacts[ProjectID]) &&
Impacts[Date] <= EARLIER(Impacts[Date])
))
InvestmentDate =
CALCULATE (
FIRSTNONBLANK ( Impacts[Date]; 0 );
FILTER ( ALL ( Impacts ); Impacts[RunningSum] <> 0 )
)
BreakEvenDate =
CALCULATE (
FIRSTNONBLANK ( Impacts[Date]; 0 );
FILTER ( ALL ( Impacts ); Impacts[RunningSum] > 0 )
)
Payback = DATEDIFF(Impacts[InvestmentDate];Impacts[BreakEvenDate];MONTH)
Result:
Good luck!
After a fair amount of trial and error, I came up with a solution.
Step 1: Build out a helper metrics table. This serves 2 purposes: (a) excludes irrelevant metrics (like revenue), and (b) ensure costs are negative and savings are positive.
Metrics Table
Step 2: Build 2 helper measures that will go into the virtual, summarized, intermediate table.
CumulativeTotalMetric :=
CALCULATE (
SUMX (
Impact,
Impact[Latest Estimate Monthly Values]
* RELATED ( BaseMetrics[Payback Period Multiplier] )
),
FILTER ( ALL ( Impact[Month] ), Impact[Month] <= MAX ( Impact[Month] ) )
)
TotalMetric :=
SUMX (
Impact,
Impact[Latest Estimate Monthly Values]
* RELATED ( BaseMetrics[Payback Period Multiplier] )
)
Step 3: Create the final measure that creates the virtual table (BaseTable), and performs logical operations on it to arrive at the final payback period.
Payback Period (Years) :=
VAR BaseTable =
ADDCOLUMNS (
SUMMARIZE ( Impact, Impact[initiative #], Impact[snapshot], Impact[Month] ),
"Cumulative Total Impact", CALCULATE ( [CumulativeTotalMetric] ),
"Total Impact", CALCULATE ( [TotalMetric] )
)
VAR LastCumulativeLossDate =
MAXX ( FILTER ( BaseTable, [Cumulative Total Impact] < 0 ), [Month] )
VAR BreakEvenDate =
MINX (
FILTER (
BaseTable,
[Month] > LastCumulativeLossDate
&& [Cumulative Total Impact] > 0
),
[Month]
)
VAR InitialInvestmentDate =
MINX ( FILTER ( BaseTable, [Total Impact] < 0 ), [Month] )
RETURN
IF (
OR ( ISBLANK ( InitialInvestmentDate ), ISBLANK ( BreakEvenDate ) ),
BLANK (),
( BreakEvenDate - InitialInvestmentDate )
/ 365
)
This last meaure is pretty complicated. It uses progressive, dependent variables. It starts with the same base table, and defines variables that are used in subsequent variables. I'm no DAX expert, but I suspect using these variables helps with the calculation efficiency.
EDIT: I should note that I didn't use this measure as a calculated column -- I simply used it in a pivot table which is the same "shape" as the "Projects" table above -- one line per project / initiative.
I'd appreciate any pointers on this, I need to look up in PP a value based on a range in another PP Table.
I want to return 'BAND' based on where Revenue in the first table falls between High and Low Band Values in the Band Table.
=LOOKUPVALUE(Band[Band],Band[Low],>=[Revenue],Band[High],<=[Revenue])
The Band Table is set up as
Band 0-100 Low 0 High 100
Band 101-200 Low 101 High 200
etc
I've also tried this...
=FILTER(Band[Band],[Revenue]>=Band[Low],[Revenue]<=Band[High])
Thanks for your help.
Gav
LookupValue doesn't support conditional evaluations, instead you can use a FILTER function and FIRSTNONBLANK function to get the right Band[Band].
Create a calculated column in the Combined table using this expression:
LookupBand =
CALCULATE (
FIRSTNONBLANK ( Band[Band], 0 ),
FILTER (
Band,
[Low] <= EARLIER ( Combined[Revenue] )
&& [High] >= EARLIER ( Combined[Revenue] )
)
)
I have two measures in my tabular cube.
The first one called
'Number of Days' := CALCULATE(COUNTROWS(SUMMARIZE('A'[Date])))
The second one will includes the first one as its expression
'Number of Days (MTD)' := CALCULATE(TOTALMTD([Number of Days],'A'[Date]))
The second measure when I browse the cube and pull out the measure.
It runs incredibly slow.
Any idea how I can optimize these measurements and make it run faster?
Sample Data
Volume:= SUMX(A, DIVIDE([Volume],2))
Volume (MTD):= TOTALMTD([Volume],'A'[Date])
Updated extra measurements
The best practice should be creating a Calendar/Date table and use TOTALMTD Time Intelligence function. However this approach can be used if your model doesn't include a Date table.
First measure, number of days:
Num of Days := DISTINCTCOUNT(A[Date])
Cumulative measure:
Num of days (MTD) :=
CALCULATE (
[Num of Days],
FILTER (
ALL ( A ),
[Date] <= MAX ( A[Date] )
&& MONTH ( [Date] ) = MONTH ( MAX ( [Date] ) )
&& YEAR ( [Date] ) = YEAR ( MAX ( [Date] ) )
)
)
UPDATE: Added screenshot.
UPDATE 2: It seems you need to calculate a cumulative total, in that case just use the below expression for the second measure:
Num of days (MTD) :=
CALCULATE ( [Num of Days], FILTER ( ALL ( A ), [Date] <= MAX ( A[Date] ) ) )
UPDATE 3: Usuing SUMX and DISTINCT to count distinct dates.
Replace the first measure by the following:
Num of Days = SUMX(DISTINCT(A[Date]), 1)
This solution could be more performant than use COUNTROWS + SUMMARIZE,
however it could be very slow depending on the number of rows and the
machine where it is running.
Let me know if this helps.