Is positional encoding necessary for transformer in language modeling? - transformer-model

I am developing a language model like https://pytorch.org/tutorials/beginner/transformer_tutorial.html.
It is not clear for me - whether positional encoding is neccessary here ?
As far as I understand - it is necessary for language translation task because the decoder should be able to position the word from the previous output within the sequence from encoder.
But is it necessary in language modeling without the decoder ?
Is it possible that the words in the encoder output are shuffled ?
Edit:
there are no explanations in the original paper. And I didn't find explanations in tutorials (like here https://kazemnejad.com/blog/transformer_architecture_positional_encoding/).
I don't understand this:
"As each word in a sentence simultaneously flows through the Transformer’s encoder/decoder stack, The model itself doesn’t have any sense of position/order for each word."
From my point of view - transformer encoder has info about the order because its input is an ordered sequence (similar to RNN).
I tried to remove positional encoding from the model. It works, but with a worse performance.
Is it useful to add such positional encoding to RNN ? Could it improve its performance ?

This research group claims positional encoding is not necessary: https://arxiv.org/abs/1905.04226

I saw the following video,
https://www.youtube.com/watch?v=S27pHKBEp30
In which, he says at timestamp about 16:00, that without positional encoding attention mechanism is just a 'Bag of Words'.

Taken from https://jalammar.github.io/illustrated-transformer/
Changing the order of words, will permute the order of the rows of V, but will also permute the order of the columns of the correlation matrix Q x transpose(K). Thus the resulting output will be unchanged and positional information will be lost after the first self attention layer.
To solve this you encode the position into the embedding of each word, so the neural net can learn to take two embeddings and know how far they are apart no matter the order they are fed in.
From the abstract that claimed positional encoding is not necessary:
The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering.

Related

How does choosing between pre and post zero padding of sequences impact results

I'm working on an NLP sequence labelling problem. My data consists of variable length sequences (w_1, w_2, ..., w_k) with corresponding labels (l_1, l_2, ..., l_k) (in this case the task is named entity extraction).
I intend to solve the problem using Recurrent Neural Networks. As the sequences are of variable length I need to pad them (I want batch size >1). I have the option of either pre zero padding them, or post zero padding them. I.e. either I make every sequence (0, 0, ..., w_1, w_2, ..., w_k) or (w_1, w_2, ..., w_k, 0, 0, ..., 0) such that the lenght of each sequence is the same.
How does the choice between pre- and post padding impact results?
It seems like pre padding is more common, but I can't find an explanation of why it would be better. Due to the nature of RNNs it feels like an arbitrary choice for me, since they share weights across time steps.
Commonly in RNN's, we take the final output or hidden state and use this to make a prediction (or do whatever task we are trying to do).
If we send a bunch of 0's to the RNN before taking the final output (i.e. 'post' padding as you describe), then the hidden state of the network at the final word in the sentence would likely get 'flushed out' to some extent by all the zero inputs that come after this word.
So intuitively, this might be why pre-padding is more popular/effective.
This paper (https://arxiv.org/pdf/1903.07288.pdf) studied the effect of padding types on LSTM and CNN. They found that post-padding achieved substantially lower accuracy (nearly half) compared to pre-padding in LSTMs, although there wasn't a significant difference for CNNs (post-padding was only slightly worse).
A simple/intuitive explanation for RNNs is that, post-padding seems to add noise to what has been learned from the sequence through time, and there aren't more timesteps for the RNN to recover from this noise. With pre-padding, however, the RNN is better able to adjust to the added noise of zeros at the beginning as it learns from the sequence through time.
I think more thorough experiments are needed in the community for more detailed mechanistic explanations on how padding affects performance.
I always recommend using pre-padding over post-padding, even for CNNs, unless the problem specifically requires post-padding.

Patterns in a key generation algorithm

I want to reverse-engineer a key generation algorithm which starts from a 4-byte ID, and the output is a 4-byte key. This seems to not be impossible or very difficult, because some patterns can be observed. In the following picture are the inputs and outputs of the algorithm for 8 situations:
As it can be seen, if the bytes from inputs are matching, also the outputs are matching, but with some exceptions (the red marking in the image).
So I think there are some simple arithmetic/binary operations done, and the mismatch could come from a carry of an addition operation.
Until now I ran a C program with some simple operations on the least significant byte of the inputs, with up to 4 variable parameters (0..255, all combinations) and compared with the output LSB, but without success.
Could you please advise me, what else could I try? And what do you think, it's possible what I'm trying to do?
Thank you very much!

Is there a hash function for binary data which produces closer hashes when the data is more similar?

I'm looking for something like a hash function but for which it's output is closer the closer two different inputs are?
Something like:
f(1010101) = 0 #original hash
f(1010111) = 1 #very close to the original hash as they differ by one bit
f(0101010) = 9999 #not very close to the original hash they all bits are different
(example outputs for demonstration purposes only)
All of the input data will be of the same length.
I want to make comparisons between a file a lots of other files and be able to determine which other file has the fewest differences from it.
You may try this algorithm.
http://en.wikipedia.org/wiki/Levenshtein_distance
Since this is string only.
You may convert all your binary to string
for example:
0 -> "00000000"
1 -> "00000001"
You might be interested in either simhashing or shingling.
If you are only trying to detect similarity between documents, there are other techniques that may suit you better (like TF-IDF.) The second link is part of a good book whose other chapters delve into general information retrieval topics, including these other techniques.
You should not use a hash for this.
You must compute signatures containing several characteristic values like :
file name
file size
Is binary / Is ascii only
date (if needed)
some other more complex like :
variance of the values of bytes
average value of bytes
average length of same value bits sequence (in compressed files there are no long identical bit sequences)
...
Then you can compare signatures.
But the most important is to know what kind of data is in these files. If it is images, the size and main color are more important. If it is sound, you could analyse only some frequencies...
You might want to look at the source code to unix utilities like cmp or the FileCmp stuff in Python and use that to try to determine a reasonable algorithm.
In my uninformed opinion, calculating a hash is not likely to work well. First, it can be expensive to calculate a hash. Second, what you're trying to do sounds more like a job for encoding than a hash; once you start thinking of it that way, it's not clear that it's even worth transforming the file that way.
If you have some constraints, specifying them might be useful. For example, if all the files are the exact same length, that may simplify things. Or if you are only interested in differences between bits in the same position and not interested in things that are similar only if you compare bits in different positions (e.g., two files are identical, except that one has everything shifted three bits--should those be considered similar or not similar?).
You could calculate the population count of the XOR of the two files, which is exactly the number of bits that are not the same between the two files. So it just does precisely what you asked for, no approximations.
You can represent your data as a binary vector of features and then use dimensionality reduction either with SVD or with random indexing.
What you're looking for is a file fingerprint of sorts. For plain text, something like Nilsimsa (http://ixazon.dynip.com/~cmeclax/nilsimsa.html) works reasonably well.
There are a variety of different names for this type of technique. Fuzzy Hashing/Locality Sensitive Hashing/Distance Based Hashing/Dimensional reduction and a few others. Tools can generate a fixed length output or variable length output, but the outputs are generally comparable (eg by levenshtein distance) and similar inputs yield similar outputs.
The link above for nilsimsa gives two similar spam messages and here are the example outputs:
773e2df0a02a319ec34a0b71d54029111da90838cbc20ecd3d2d4e18c25a3025 spam1
47182cf0802a11dec24a3b75d5042d310ca90838c9d20ecc3d610e98560a3645 spam2
* * ** *** * ** ** ** ** * ******* **** ** * * *
Spamsum and sdhash are more useful for arbitrary binary data. There are also algorithms specifically for images that will work regardless of whether it's a jpg or a png. Identical images in different formats wouldn't be noticed by eg spamsum.

Deducing string transformation rules

I have a set of pairs of character strings, e.g.:
abba - aba,
haha - aha,
baa - ba,
exb - esp,
xa - za
The second (right) string in the pair is somewhat similar to the first (left) string.
That is, a character from the first string can be represented by nothing, itself or a character from a small set of characters.
There's no simple rule for this character-to-character mapping, although there are some patterns.
Given several thousands of such string pairs, how do I deduce the transformation rules such that if I apply them to the left strings, I get the right strings?
The solution can be approximate, working correctly for, say, 80-95% of the strings.
Would you recommend to use some kind of a genetic algorithm? If so, how?
If you could align the characters, or rather groups of characters, you could work out tables saying that aa => a, bb => z, and so on. If you had such tables, you could align the characters using http://en.wikipedia.org/wiki/Dynamic_time_warping. One approach is therefore to guess an alignment (e.g. one for one, just as a starting point, or just align the first and last characters of each sequence), work out a translation table from that, use DTW to get a new alignment, work out a revised translation table, and iterate in that way. Perhaps you could wrap this up with enough maths to show that there is some measure of optimality or probability that such passes increase, climbing to a local maximum.
There is probably some way of doing this by modelling a Hidden Markov Model that generates both sequences simultaneously and then deriving rules from that model, but I would not chose this approach unless I was already familiar with HMMs and had software to use as a starting point that I was happy to modify.
You can use text to speech to create sound waves. then compare sound waves with other's and match them with percentages.
This is my theory how Google has such a advanced spell checker.

Algorithm to Map Strings to Short Replacements

I'm looking at ways to deterministically replace unique strings with unique and optimally short replacements. So I have a finite set of strings, and the best compression I could achieve so far is through an enumeration algorithm, where I order the input set and then replace the strings with an enumeration of char strings over an extended alphabet (a..z, A...Z, aa...zz, aA... zZ, a0...z9, Aa..., aaa...zaa, aaA...zaaA, ....).
This works wonderfully as far as compression is concerned, but has the severe drawback that it is not atomic on any given input string. Rather, its result depends on knowing all input strings right from the start, and on the ordering of the input set.
Anybody knows of an algorithm that has similar compression but doesn't require knowing all input strings upfront?! Hashing for example would not work for me, as depending on the size of the input set I'd need a hash length of 8-12 for the hashes to be unique, and that would be too long as replacements (currently, the replacement strings are 1-3 chars long for my use cases (<10,000 input strings)). Also, if theoreticians among us know this is wasted effort, I would be interested to hear :-) .
You could use your enumeration scheme, but sorted by the order in which you first encounter the input strings.
For example, the first string you ever process can be mapped to "a".
The next distinct string would be mapped to "b", etc.
Every time you process a string, you'd need to look it up to see if it has already been mapped.
"Optimally short" depends on the population of strings from which your samples are drawn. In the absence of systematic redundancy in the population, you will find that only a fraction of arbitrary strings can be compressed at all (e.g., consider trying to compress random bit strings).
If you can make assumptions about your data, such as "the strings are expected to be mainly composed of English words" then you can do something simple and effective based on letter frequency (e.g., for English, the relative frequency order is something like ETAOINSHRDLUGCY..., so you would want to use fewer bits to represent Es and more bits to represent uncommon letters like Q).
Cheers.

Resources