How can I increase the use of RAM in Colab? - performance

I'm just using 1.49 out of 25 GB of memory from Colab while running a script? How can I use the maximum memory capacity to speed up the process?
Thanks!

Data processing is done using a CPU or a GPU (or both of them at the same time). For the CPU, its speed can be measured using 2 metrics : Instructions per Second (IPS), or Floating Point Operations per Second (FLOPS). The architecture of a CPU and the number of cores affect its speed. Nowadays, GPU's are heavily used in data processing due to their bandwidth advantage over CPU's, there are a lot of other reasons, you can look them up here : CPU Vs GPU
So in order to speed up the data processing, make sure you're using Colab's GPU to run tests, while RAM holds all the data and variables of your current session. If you want to use all the RAM available, you simply need to use a bigger dataset as mentionned by #AEM (more data = more RAM usage).
If you want to see the effects of more data on the RAM, you can try this simple code :
data = []
while(1):
data.append('1234')
This infinite loop makes you add more & more data into a list until you hit the maximum usage of RAM (Colab might crash eventually), hope this helps.

Related

Fully Utilise CPU and Memory

I have a system - processor 2.8 ghz, 20 physical cores, 40 logical cores, 128 gb ram and 4tb hard drive.
Scenario:
I am running 3 (independent) python base processes/scripts (running independently) that read data from file and write it to database. They are taking time while not using CPU and Memory 100% not even 40%.
Why is it so? (I think it depends upon OS)
How can I configure it to utilise CPU and Memory more?
I am using Windows 8.1.
take a look at processoraffinity and processpriority
https://msdn.microsoft.com/en-us/library/system.diagnostics.processthread.processoraffinity(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.process.priorityclass(v=vs.110).aspx
A process (including a python script) isn't going to use any more cores than it has running threads. So if your python script is single-threaded, it's only going to use a single core.
Further, disk and database operations will stall the process while blocked on I/O and network. (Effective CPU usage == 0).
In other words, your program may not be "cpu bound" if it's doing a lot of I/O.
I'm not sure what your programs do, but if the problem at hand can be parallelized (split up into multiple independent tasks), then it might lend itself to having more threads or processes to take advantage of the extra hardware you have. But it's tricky and very hard to get this right and get the performance gain.

Operations that use only RAM

Can you please tell me some example code where we use ignorable amount of CPU and storage but heavy use of RAM? Like, if I run a loop and create objects, this will consume RAM but not CPU or storage. I mean tell me some memory expensive operations.
appzYourLife gave a good example, but I'd like to give a more conceptual answer.
Memory is slow. Like it's really slow, at least on the time scale that CPUs operate on. There is a concept called the memory hierarchy, which illustrates the trade off between cost/capacity and speed.
To prevent a fast CPU from wasting its time waiting on slow memory, we came up with CPU cache, which is a very small amount (it's expensive!) of very fast memory. The CPU never directly interacts with RAM, only the lowest level of CPU cache. Any time the CPU needs data that doesn't fall in the cache, it dispatches the memory controller to go fetch the desired data from RAM and put it in cache. The memory controller does this directly, without CPU involvement (so that the CPU can handle another process while wasting on this slow memory I/O).
The memory controller can be smart about how it does its memory fetching however. The principle of locality comes into play, which is the trend that CPUs tend to deal mostly with closely related (close in memory) data, such as arrays of data or long series of consecutive instructions. Knowing this, the memory controller can prefetch data from RAM that it predicts (according to various prediction algorithms, a key topic in CPU design) might be needed soon, and makes it available to the CPU before the CPU even knows it will need it. Think of it like a surgeon's assistant, who preempts what tools will be needed, and offers to hand them to the surgeon the moment they're needed, without the surgeon needing to request them, and without making the surgeon wait for the assistant to go get them and come back.
To maximize RAM usage, you'd need to minimize cache usage. This can be done by doing a lot of unexpected jumps between distant locations in memory. Typically, linked structures (such as linked lists) can cause this to happen. If a linked structure is composed of nodes that are scattered all throughout RAM, then there is no way for the memory controller to be able to predict all their locations and prefetch them. Traversing such a structure will cause many "cache misses" (a memory request for which the data isn't cached, and must be fetched from RAM), which are RAM intensive.
Ultimately, the CPU would usually be used heavily too, because it won't sit around waiting for the memory access, but will instead execute the instructions of the other processes running on the system, if there are any.
In Swift the Int64 type requires 64 bit of memory. So if you allocate space for 1000000 Int64 you will reserve memory for 8 MB.
UnsafeMutablePointer<Int64>.alloc(1000000)
The process should not consume much CPU since you are not initializing that memory, you are just allocating it.

How to reduce time taken for large calculations in MATLAB

When using the desktop PC's in my university (Which have 4Gb of ram), calculations in Matlab are fairly speedy, but on my laptop (Which also has 4Gb of ram), the exact same calculations take ages. My laptop is much more modern so I assume it also has a similar clock speed to the desktops.
For example, I have written a program that calculates the solid angle subtended by 50 disks at 500 points. On the desktop PC's this calculation takes about 15 seconds, on my laptop it takes about 5 minutes.
Is there a way to reduce the time taken to perform these calculations? e.g, can I allocate more ram to MATLAB, or can I boot up my PC in a way that optimises it for using MATLAB? I'm thinking that if the processor on my laptop is also doing calculations to run other programs this will slow down the MATLAB calculations. I've closed all other applications, but I know theres probably a lot of stuff going on I can't see. Can I boot my laptop up in a way that will have less of these things going on in the background?
I can't modify the code to make it more efficient.
Thanks!
You might run some of my benchmarks which, along with example results, can be found via:
http://www.roylongbottom.org.uk/
The CPU core used at a particular point in time, is the same on Pentiums, Celerons, Core 2s, Xeons and others. Only differences are L2/L3 cache sizes and external memory bus speeds. So you can compare most results with similar vintage 2 GHz CPUs. Things to try, besides simple number crunching tests.
1 - Try memory test, such as my BusSpeed, to show that caches are being used and RAM not dead slow.
2 - Assuming Windows, check that the offending program is the one using most CPU time in Task Manager, also that with the program not running, that CPU utilisation is around zero.
3 - Check that CPU temperature is not too high, like with SpeedFan (free D/L).
4 - If disk light is flashing, too much RAM might be being used, with some being swapped in and out. Task Manager Performance would show this. Increasing RAM demands can be checked my some of my reliability tests.
There are many things that go into computing power besides RAM. You mention processor speed, but there is also number of cores, GPU capability and more. Programs like MATLAB are designed to take advantage of features like parallelism.
Summary: You can't compare only RAM between two machines and expect to know how they will perform with respect to one another.
Side note: 4 GB is not very much RAM for a modern laptop.
Firstly you should perform a CPU performance benchmark on both computers.
Modern operating systems usually apply the most aggressive power management schemes when it is run on laptop. This usually means turning off one or more cores, or setting them to a very low frequency. For example, a Quad-core CPU that normally runs at 2.0 GHz could be throttled down to 700 MHz on one CPU while the other three are basically put to sleep, while it is on battery. (Remark. Numbers are not taken from a real example.)
The OS manages the CPU frequency in a dynamic way, tweaking it on the order of seconds. You will need a software monitoring tool that actually asks for the CPU frequency every second (without doing busy work itself) in order to know if this is the case.
Plugging in the laptop will make the OS use a less aggressive power management scheme.
(If this is found to be unrelated to MATLAB, please "flag" this post and ask moderator to move this question to the SuperUser site.)

What's the speed of texture upload?

I would like to upload two images to the GPU memory, and I'm interested how fast I can do this?
In fact - will it be faster to compare two bitmaps in RAM with CPU, or upload them to GPU and use GPU parallelism to do it?
If you run the CUDA device bandwidth sample, you'll get a benchmark for the upload speed.
Assuming DDR3 tri-channel 1600MHz RAM, you'll get something like 38 GB/s memory bandwidth.
Take a typical midrange card like a GTX460 and you'll get something like 84 GB/s memory bandwidth. Note that you'll have to make a hop across the bus which is something like 8GB/s theoretical, ~5.5 in practice for a PCI-E2.0 x16 link.
Note that kotlinski's answer isn't quite correct. You'll can do compared in parallel and then do a parallel reduction in which case, the bigger GPU device bandwidth can work win out eventually.
I think the answer is likely to be: a loss to upload to GPU and do comparison once. Possible gain if comparison is made multiple times (kept and modified on the GPU, for example).
Edit:
The multiple times comparison refers to if you modified the images on the GPU memory in situ. Thus, it would merit another comparison (caching doesn't cut it), while not incurring the penalty of another copy across the bus.
Since memory access is the bottleneck here, it is extremely likely that it is faster to just do it in CPU. Making it run in parallel is not likely to give you anything, memory access is essentially a serial operation.
The answer to this question is highly debatable and depends entirely on you systems configuration. This means that you'll have to do the benchmarks yourself. Factors that could influence your situation:
Speed of your RAM
Speed of the GPU Bus
Whether or not you have shared RAM between GPU & CPU
However, I do think that in the general case (eg. with busspeeds in the order of GB/s) it's faster to upload the images to the GPU and do the difference comparison there.

CPU Utilization and threads

We have a transaction intensive process at one customer site running on a quad core server with four processors. The process is designed to take advantage of every core available. So in this installation, we take an input queue, divide it by 16th's and allocate each fraction of the queue to a core. It works well and keeps up with the transaction volume on the box.
Looking at the CPU utilization on the box, it never seems to go above 33%. Now we have a new customer with at least double the volume of the existing customer. Some of us are arguing that since CPU usage is way below maximum utilization, that we should go with the same configuration.
Others claim that there is no direct correlation between cpu utilization and transaction processing speed and since the logic of the underlying software module is based on the number of available cores, that it makes sense to obtain a box with proportionately more cores available for the new client to accommodate the increased traffic volume.
Does anyone have a sense as to who is right in this instance?
Thank you,
To determine the optimum configuration for your new customer, understanding the reason for low CPU usage is paramount.
Very likely, the reason is one of the following:
Your process is limited by memory bandwidth. In this case, faster RAM will help if supported by the motherboard. If possible, a redesign to limit the amount of data accessed during processing will improve performance. Adding more CPU cores will, on its own, do nothing to improve performance.
Your process is limited by disk I/O. Using faster disk connections (SATA etc.) and/or upgrading to a SSD might help, but more CPU power will not.
Your process is limited by synchronization contention. In this case, adding more threads for more cores might even be counter productive. Redesigning your algorithm might help in this case.
Having said this, I have also seen situations where processes that are definitely CPU bound fail to achieve 100% CPU usage on modern processors (Core i7 etc.) because in certain turbo boost relevant cases, task manager will show less than 100%.
As 9000 said, you need to find out what your bottlenecks are when under load. Perfmon might provide enough data to find out.
Another afterthought: You could limit your process on the existing machine to part of the cores (but still at least 30% so that theoretically, CPU doesn't become a bottleneck due to this limitation) and check if overall throughput degrades. If it does not, adding more cores will not improve performance.

Resources