OCaml syntax: variables side-by-side - syntax

I feel like I'm missing some important fundamentals regarding this weird language.
Consider the following program:
let q f x = f x x;;
let s = q (+);;
If I run this in OCaml, I get:
val q : ('a -> 'a -> 'b) -> 'a -> 'b = <fun>
val s : int -> int = <fun>
Compared to other OCaml code I've seen, the syntax for this is really weird to me. In the first line, what does setting q to f x x do? What does q (+) do as well (hoping I can understand this if I get the first part)? Any help understanding this code would help.

You are probably missing the fact that a space is application of the function.
With parentheses for arguments what you have is
q(f,x) = f(x,x)
s(n) = q(plus, n)
plus(k,l) = k + l
(+) being a shortcut for the function which takes x and y and returns x + y, which you can write (+) x x as well.
In your case q (+) is the function
fun x -> x + x

Related

What's a shorter way of writing `(\ x -> traceShow x x )`?

Printing the value of an expression is a common practice in debugging. For example, if I have a piece of code like this
my . super . cool . fUnCtIoN . chain $ value
and I am trying to see the output of fUnCtIoN . chain, I would add
my . super . cool . (\ x -> traceShow x x ) . fUnCtIoN . chain $ value
which is mouthful for a simple task like this, not to mention if I want to print many intermediate results:
(\ x -> traceShow x x )
. my
. (\ x -> traceShow x x )
. super
. (\ x -> traceShow x x )
. cool
. (\ x -> traceShow x x )
. fUnCtIoN
. (\ x -> traceShow x x )
. chain
$ value
It would just look awful. Is there a better way to do this?
Just use traceShowId! It does exactly what you're asking for.
my . super . cool . traceShowId . fUnCtIoN . chain $ value
Yes. join traceShow.
λ> import Control.Monad
λ> :t join
join :: Monad m => m (m a) -> m a
λ> :t join (+)
join (+) :: Num a => a -> a
In the case of the function monad, join f x = f x x, so join traceShow is equivalent to \x -> traceShow x x.
Or make a where clause that provides a new definition of (.):
--...your code without the nasty bits...
where
(.) f g a = f ( join traceShow (g a))
Which may just help, though there will be one more traceShow call than previously.
How about a helper function for adding a trace call to a function:
dbg :: Show a => String -> a -> a
dbg name x = trace (name ++ ": " ++ show x) x
main = do
let x = dbg "my" . my
. dbg "super" . super
. dbg "cool" . cool
. dbg "func" . fUnCtIoN
. dbg "chain" . chain
$ value
print x
my = (+1)
super = (+2)
cool = (+3)
fUnCtIoN = (+4)
chain = (+5)
value = 3
Output:
chain: 3
func: 8
cool: 12
super: 15
my: 17
18
You could write a higher-order function which takes a function of two arguments and uses the same value for both arguments.
applyBoth :: (a -> a -> b) -> a -> b
applyBoth f x = f x x
(Aside: this is join for the "reader" monad (->) a.)
Then you can use that combinator in curried form:
applyBoth traceShow
. my
. applyBoth traceShow
. super
. applyBoth traceShow
. cool
. applyBoth traceShow
. fUnCtIoN
. applyBoth traceShow
. chain
$ value
Or define an alias for applyBoth traceShow.
traceS = applyBoth traceShow
traceS
. my
. traceS
. super
. traceS
. cool
. traceS
. fUnCtIoN
. traceS
. chain
$ value
For maximum terseness points, you can automatically interleave traceS into a list of functions by folding it up:
showSteps :: Show a => [a -> a] -> a -> a
showSteps = foldr (\f g -> f . traceS . g) id
showSteps [my, super, cool, fUnCtIoN, chain] value
Edit Eh, what the hell... It's not entirely relevant, but here's how to make showSteps work when you want to pipeline your data through a number of types. It's an example of a program we wouldn't be able to write without GHC's advanced type system features (GADTs and RankNTypes in this instance).
Path is a GADT which explains how to walk through a directed graph of types, starting at the source type x and ending at the destination type y. It's parameterised by a category c :: * -> * -> *.
infixr 6 :->
data Path c x y where
End :: Path c z z
(:->) :: c x y -> Path c y z -> Path c x z
:-> reminds us that a journey of a thousand miles begins with a single step: if the category you're working in lets you go from x to y, and you can take a path from y to z, you can go from x to z.
End is for when you have reached your destination - it's pretty easy to walk from z to z by not walking at all.
So Path has the same recursive structure as a linked list, but with a more flexible approach to the things inside it. Rather than requiring all of its elements to have the same type, it gives you a way to join up arrows like dominos, as long as the return type of one arrow matches the input type of the next. (To use the mathematical jargon: if you view the underlying category c as a logical relation, then End augments c with reflexivity and :-> augments c with transitivity. Path c thus constructs the reflexive transitive closure of c. Another way of looking at this is that Path is the free category, much like [] is the free monoid; you can define instance Category (Path c) without any constraint on c.)
You can fold up a Path with exactly the same code as you use to fold up a list, but the type is more precise: the folding function can't know anything a priori about the types of the arrows inside the path.
foldr :: (forall x y. c x y -> r y z -> r x z) -> r z z -> Path c x z -> r x z
foldr f z End = z
foldr f z (x :-> xs) = f x $ foldr f z xs
At this point, I could define type-aligned sequences of functions (type TAS = Path (->)) and show you how f :-> g :-> h :-> End can be folded up into h . g . f, but since our goal is to print out all the intermediate values, we have to use a category with a tiny bit more structure than plain old ->. (Thanks to #dfeuer in the comments for the suggestion - I've adjusted the name he gave to better reflect the attention-seeking nature of my behaviour.)
data Showoff x y where
Showoff :: Show y => (x -> y) -> Showoff x y
Showoff is just like a regular function, except it assures you that the return value y will be Showable. We can use this extra bit of knowledge to write showSteps for paths in which each step is a Showoff.
type ShowTAS = Path Showoff
showSteps :: ShowTAS a b -> a -> b
showSteps path = foldr combine id path . traceS
where combine (Showoff f) g = g . traceS . f
It strikes me as a bit of a shame to use the impure traceS right in the midst of all this strongly typed fun. In real life I'd probably return a String along with the answer.
To prove that it does actually work, here is a chain of functions with varying types. We take in a String, read it into an Int, add one to it, convert it to a Float, then divide it by 2.
chain :: ShowTAS String Float
chain = Showoff read :-> plusOne :-> toFloat :-> divideTwo :-> End
where plusOne :: Showoff Int Int
plusOne = Showoff (+1)
toFloat :: Showoff Int Float
toFloat = Showoff fromIntegral
divideTwo :: Showoff Float Float
divideTwo = Showoff (/2)
ghci> showSteps chain "4"
"4"
4
5
5.0
2.5
2.5 -- this last one is not from a traceShow call, it's just ghci printing the result
Fun!

Speeding up a stream like data type

I've made a type which is supposed to emulate a "stream". This is basically a list without memory.
data Stream a = forall s. Stream (s -> Maybe (a, s)) s
Basically a stream has two elements. A state s, and a function that takes the state, and returns an element of type a and the new state.
I want to be able to perform operations on streams, so I've imported Data.Foldable and defined streams on it as such:
import Data.Foldable
instance Foldable Stream where
foldr k z (Stream sf s) = go (sf s)
where
go Nothing = z
go (Just (e, ns)) = e `k` go (sf ns)
To test the speed of my stream, I've defined the following function:
mysum = foldl' (+) 0
And now we can compare the speed of ordinary lists and my stream type:
x1 = [1..n]
x2 = Stream (\s -> if (s == n + 1) then Nothing else Just (s, s + 1)) 1
--main = print $ mysum x1
--main = print $ mysum x2
My streams are about half the speed of lists (full code here).
Furthermore, here's a best case situation, without a list or a stream:
bestcase :: Int
bestcase = go 1 0 where
go i c = if i == n then c + i else go (i+1) (c+i)
This is a lot faster than both the list and stream versions.
So I've got two questions:
How to I get my stream version to be at least as fast as a list.
How to I get my stream version to be close to the speed of bestcase.
As it stands the foldl' you are getting from Foldable is defined in terms of the foldr you gave it. The default implementation is the brilliant and surprisingly good
foldl' :: (b -> a -> b) -> b -> t a -> b
foldl' f z0 xs = foldr f' id xs z0
where f' x k z = k $! f z x
But foldl' is the specialty of your type; fortunately the Foldable class includes foldl' as a method, so you can just add this to your instance.
foldl' op acc0 (Stream sf s0) = loop s0 acc0
where
loop !s !acc = case sf s of
Nothing -> acc
Just (a,s') -> loop s' (op acc a)
For me this seems to give about the same time as bestcase
Note that this is a standard case where we need a strictness annotation on the accumulator. You might look in the vector package's treatment of a similar type https://hackage.haskell.org/package/vector-0.10.12.2/docs/src/Data-Vector-Fusion-Stream.html for some ideas; or in the hidden 'fusion' modules of the text library https://github.com/bos/text/blob/master/Data/Text/Internal/Fusion .

Sort Function in OCaml not working

New to OCaml and learning I am. I wrote the function below. Would you say this function is OK? Well I get an error but does the algorithm makes sense? And how can I correct it.
let rec sort l =
match l with
[] -> []
|h::t -> insert h (sort t)
;;
let rec insert x l =
match l with
[] -> [x]
|h::t ->
if x <= h
then x :: h :: t
else h :: insert x t
;;
sort [3; 2; 8; 4; 1];;
I get in my terminal:
Error: Unbound value sort
In the code you give here, it's insert that's not defined when you use it.
If I put the definition of insert first, it works fine for me. It seems like good code as far as I can tell (though not a particularly fast sort).
I would try starting up your OCaml from scratch again. You probably have some old definitions that are confusing things.
I figured this out myself. I should have made the order of functions so that insert comes before sort :)
(* Sort a list *)
let rec insert x l =
match l with
[] -> [x]
|h::t ->
if x <= h
then x :: h :: t
else h :: insert x t
;;
let rec sort l =
match l with
[] -> []
|h::t -> insert h (sort t)
;;
sort [3; 2; 8; 4; 1];;
The sort function is dependent on the insert function and to OCaml, calling the sort function makes no sense because the it doesn't know the insert function just yet. So changing the order of function definition fixes the problem.

dynamic programming and continuation passing style

for simple problems like fibonacci, writing CPS is relatively straightforward
let fibonacciCPS n =
let rec fibonacci_cont a cont =
if a <= 2 then cont 1
else
fibonacci_cont (a - 2) (fun x ->
fibonacci_cont (a - 1) (fun y ->
cont(x + y)))
fibonacci_cont n (fun x -> x)
However, in the case of the rod-cutting exemple from here (or the book intro to algo), the number of closure is not always equal to 2, and can't be hard coded.
I imagine one has to change the intermediate variables to sequences.
(I like to think of the continuation as a contract saying "when you have the value, pass it on to me, then i'll pass it on to my boss after treatment" or something along those line, which defers the actual execution)
For the rod cutting, we have
//rod cutting
let p = [|1;5;8;9;10;17;17;20;24;30|]
let rec r n = seq { yield p.[n-1]; for i in 1..(n-1) -> (p.[i-1] + r (n-i)) } |> Seq.max
[1 .. 10] |> List.map (fun i -> i, r i)
In this case, I will need to attached the newly created continuation
let cont' = fun (results: _ array) -> cont(seq { yield p.[n-1]; for i in 1..(n-1) -> (p.[i-1] + ks.[n-i]) } |> Seq.max)
to the "cartesian product" continuation made by the returning subproblems.
Has anyone seen a CPS version of rod-cutting / has any tips on this ?
I assume you want to explicitly CPS everything, which means some nice stuff like the list comprehension will be lost (maybe using async blocks can help, I don't know F# very well) -- so starting from a simple recursive function:
let rec cutrod (prices: int[]) = function
| 0 -> 0
| n -> [1 .. min n (prices.Length - 1)] |>
List.map (fun i -> prices.[i] + cutrod prices (n - i)) |>
List.max
It's clear that we need CPS versions of the list functions used (map, max and perhaps a list-building function if you want to CPS the [1..(blah)] expression too). map is quite interesting since it's a higher-order function, so its first parameter needs to be modified to take a CPS-ed function instead. Here's an implementation of a CPS List.map:
let rec map_k f list k =
match list with
| [] -> k []
| x :: xs -> f x (fun y -> map_k f xs (fun ys -> k (y :: ys)))
Note that map_k invokes its argument f like any other CPS function, and puts the recursion in map_k into the continuation. With map_k, max_k, gen_k (which builds a list from 1 to some value), the cut-rod function can be CPS-ed:
let rec cutrod_k (prices: int[]) n k =
match n with
| 0 -> k 0
| n -> gen_k (min n (prices.Length - 1)) (fun indices ->
map_k (fun i k -> cutrod_k prices (n - i) (fun ret -> k (prices.[i] + ret)))
indices
(fun totals -> max_k totals k))

Factorial Algorithms in different languages

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I want to see all the different ways you can come up with, for a factorial subroutine, or program. The hope is that anyone can come here and see if they might want to learn a new language.
Ideas:
Procedural
Functional
Object Oriented
One liners
Obfuscated
Oddball
Bad Code
Polyglot
Basically I want to see an example, of different ways of writing an algorithm, and what they would look like in different languages.
Please limit it to one example per entry.
I will allow you to have more than one example per answer, if you are trying to highlight a specific style, language, or just a well thought out idea that lends itself to being in one post.
The only real requirement is it must find the factorial of a given argument, in all languages represented.
Be Creative!
Recommended Guideline:
# Language Name: Optional Style type
- Optional bullet points
Code Goes Here
Other informational text goes here
I will ocasionally go along and edit any answer that does not have decent formatting.
Polyglot: 5 languages, all using bignums
So, I wrote a polyglot which works in the three languages I often write in, as well as one from my other answer to this question and one I just learned today. It's a standalone program, which reads a single line containing a nonnegative integer and prints a single line containing its factorial. Bignums are used in all languages, so the maximum computable factorial depends only on your computer's resources.
Perl: uses built-in bignum package. Run with perl FILENAME.
Haskell: uses built-in bignums. Run with runhugs FILENAME or your favorite compiler's equivalent.
C++: requires GMP for bignum support. To compile with g++, use g++ -lgmpxx -lgmp -x c++ FILENAME to link against the right libraries. After compiling, run ./a.out. Or use your favorite compiler's equivalent.
brainf*ck: I wrote some bignum support in this post. Using Muller's classic distribution, compile with bf < FILENAME > EXECUTABLE. Make the output executable and run it. Or use your favorite distribution.
Whitespace: uses built-in bignum support. Run with wspace FILENAME.
Edit: added Whitespace as a fifth language. Incidentally, do not wrap the code with <code> tags; it breaks the Whitespace. Also, the code looks much nicer in fixed-width.
char //# b=0+0{- |0*/; #>>>>,----------[>>>>,--------
#define a/*#--]>>>>++<<<<<<<<[>++++++[<------>-]<-<<<
#Perl ><><><> <> <> <<]>>>>[[>>+<<-]>>[<<+>+>-]<->
#C++ --><><> <><><>< > < > < +<[>>>>+<<<-<[-]]>[-]
#Haskell >>]>[-<<<<<[<<<<]>>>>[[>>+<<-]>>[<<+>+>-]>>]
#Whitespace >>>>[-[>+<-]+>>>>]<<<<[<<<<]<<<<[<<<<
#brainf*ck > < ]>>>>>[>>>[>>>>]>>>>[>>>>]<<<<[[>>>>*/
exp; ;//;#+<<<<-]<<<<]>>>>+<<<<<<<[<<<<][.POLYGLOT^5.
#include <gmpxx.h>//]>>>>-[>>>[>>>>]>>>>[>>>>]<<<<[>>
#define eval int main()//>+<<<-]>>>[<<<+>>+>->
#include <iostream>//<]<-[>>+<<[-]]<<[<<<<]>>>>[>[>>>
#define print std::cout << // > <+<-]>[<<+>+>-]<<[>>>
#define z std::cin>>//<< +<<<-]>>>[<<<+>>+>-]<->+++++
#define c/*++++[-<[-[>>>>+<<<<-]]>>>>[<<<<+>>>>-]<<*/
#define abs int $n //>< <]<[>>+<<<<[-]>>[<<+>>-]]>>]<
#define uc mpz_class fact(int $n){/*<<<[<<<<]<<<[<<
use bignum;sub#<<]>>>>-]>>>>]>>>[>[-]>>>]<<<<[>>+<<-]
z{$_[0+0]=readline(*STDIN);}sub fact{my($n)=shift;#>>
#[<<+>+>-]<->+<[>-<[-]]>[-<<-<<<<[>>+<<-]>>[<<+>+>+*/
uc;if($n==0){return 1;}return $n*fact($n-1); }//;#
eval{abs;z($n);print fact($n);print("\n")/*2;};#-]<->
'+<[>-<[-]]>]<<[<<<<]<<<<-[>>+<<-]>>[<<+>+>-]+<[>-+++
-}-- <[-]]>[-<<++++++++++<<<<-[>>+<<-]>>[<<+>+>-++
fact 0 = 1 -- ><><><>< > <><>< ]+<[>-<[-]]>]<<[<<+ +
fact n=n*fact(n-1){-<<]>>>>[[>>+<<-]>>[<<+>+++>+-}
main=do{n<-readLn;print(fact n)}-- +>-]<->+<[>>>>+<<+
{-x<-<[-]]>[-]>>]>]>>>[>>>>]<<<<[>+++++++[<+++++++>-]
<--.<<<<]+written+by+++A+Rex+++2009+.';#+++x-}--x*/;}
lolcode:
sorry I couldn't resist xD
HAI
CAN HAS STDIO?
I HAS A VAR
I HAS A INT
I HAS A CHEEZBURGER
I HAS A FACTORIALNUM
IM IN YR LOOP
UP VAR!!1
TIEMZD INT!![CHEEZBURGER]
UP FACTORIALNUM!!1
IZ VAR BIGGER THAN FACTORIALNUM? GTFO
IM OUTTA YR LOOP
U SEEZ INT
KTHXBYE
This is one of the faster algorithms, up to 170!. It fails inexplicably beyond 170!, and it's relatively slow for small factorials, but for factorials between 80 and 170 it's blazingly fast compared to many algorithms.
curl http://www.google.com/search?q=170!
There's also an online interface, try it out now!
Let me know if you find a bug, or faster implementation for large factorials.
EDIT:
This algorithm is slightly slower, but gives results beyond 170:
curl http://www58.wolframalpha.com/input/?i=171!
It also simplifies them into various other representations.
C++: Template Metaprogramming
Uses the classic enum hack.
template<unsigned int n>
struct factorial {
enum { result = n * factorial<n - 1>::result };
};
template<>
struct factorial<0> {
enum { result = 1 };
};
Usage.
const unsigned int x = factorial<4>::result;
Factorial is calculated completely at compile time based on the template parameter n. Therefore, factorial<4>::result is a constant once the compiler has done its work.
Whitespace
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
It was hard to get it to show here properly, but now I tried copying it from the preview and it works. You need to input the number and press enter.
I find the following implementations just hilarious:
The Evolution of a Haskell Programmer
Evolution of a Python programmer
Enjoy!
C# Lookup:
Nothing to calculate really, just look it up. To extend it,add another 8 numbers to the table and 64 bit integers are at at their limit. Beyond that, a BigNum class is called for.
public static int Factorial(int f)
{
if (f<0 || f>12)
{
throw new ArgumentException("Out of range for integer factorial");
}
int [] fact={1,1,2,6,24,120,720,5040,40320,362880,3628800,
39916800,479001600};
return fact[f];
}
Lazy K
Your pure functional programming nightmares come true!
The only Esoteric Turing-complete Programming Language that has:
A purely functional foundation, core, and libraries---in fact, here's the complete API: S K I
No lambdas even!
No numbers or lists needed or allowed
No explicit recursion but yet, allows recursion
A simple infinite lazy stream-based I/O mechanism
Here's the Factorial code in all its parenthetical glory:
K(SII(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(K(S(K(S(K(S(SI(K(S(K(S(S(KS)K)I))
(S(S(KS)K)(SII(S(S(KS)K)I))))))))K))))))(S(K(S(K(S(SI(K(S(K(S(SI(K(S(K(S(S(KS)K)I))
(S(S(KS)K)(SII(S(S(KS)K)I))(S(S(KS)K))(S(SII)I(S(S(KS)K)I))))))))K)))))))
(S(S(KS)K)(K(S(S(KS)K)))))))))(K(S(K(S(S(KS)K)))K))))(SII))II)
Features:
No subtraction or conditionals
Prints all factorials (if you wait long enough)
Uses a second layer of Church numerals to convert the Nth factorial to N! asterisks followed by a newline
Uses the Y combinator for recursion
In case you are interested in trying to understand it, here is the Scheme source code to run through the Lazier compiler:
(lazy-def '(fac input)
'((Y (lambda (f n a) ((lambda (b) ((cons 10) ((b (cons 42)) (f (1+ n) b))))
(* a n)))) 1 1))
(for suitable definitions of Y, cons, 1, 10, 42, 1+, and *).
EDIT:
Lazy K Factorial in Decimal
(10KB of gibberish or else I would paste it). For example, at the Unix prompt:
$ echo "4" | ./lazy facdec.lazy
24
$ echo "5" | ./lazy facdec.lazy
120
Rather slow for numbers above, say, 5.
The code is sort of bloated because we have to include library code for all of our own primitives (code written in Hazy, a lambda calculus interpreter and LC-to-Lazy K compiler written in Haskell).
XSLT 1.0
The input file, factorial.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="factorial.xsl" type="text/xsl" ?>
<n>
20
</n>
The XSLT file, factorial.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" >
<xsl:output method="text"/>
<!-- 0! = 1 -->
<xsl:template match="text()[. = 0]">
1
</xsl:template>
<!-- n! = (n-1)! * n-->
<xsl:template match="text()[. > 0]">
<xsl:variable name="x">
<xsl:apply-templates select="msxsl:node-set( . - 1 )/text()"/>
</xsl:variable>
<xsl:value-of select="$x * ."/>
</xsl:template>
<!-- Calculate n! -->
<xsl:template match="/n">
<xsl:apply-templates select="text()"/>
</xsl:template>
</xsl:stylesheet>
Save both files in the same directory and open factorial.xml in IE.
Python: Functional, One-liner
factorial = lambda n: reduce(lambda x,y: x*y, range(1, n+1), 1)
NOTE:
It supports big integers. Example:
print factorial(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915\
608941463976156518286253697920827223758251185210916864000000000000000000000000
It does not work for n < 0.
APL (oddball/one-liner):
×/⍳X
⍳X expands X into an array of the integers 1..X
×/ multiplies every element in the array
Or with the built-in operator:
!X
Source: http://www.webber-labs.com/mpl/lectures/ppt-slides/01.ppt
Perl6
sub factorial ($n) { [*] 1..$n }
I hardly know about Perl6. But I guess this [*] operator is same as Haskell's product.
This code runs on Pugs, and maybe Parrot (I didn't check it.)
Edit
This code also works.
sub postfix:<!> ($n) { [*] 1..$n }
# This function(?) call like below ... It looks like mathematical notation.
say 10!;
x86-64 Assembly: Procedural
You can call this from C (only tested with GCC on linux amd64).
Assembly was assembled with nasm.
section .text
global factorial
; factorial in x86-64 - n is passed in via RDI register
; takes a 64-bit unsigned integer
; returns a 64-bit unsigned integer in RAX register
; C declaration in GCC:
; extern unsigned long long factorial(unsigned long long n);
factorial:
enter 0,0
; n is placed in rdi by caller
mov rax, 1 ; factorial = 1
mov rcx, 2 ; i = 2
loopstart:
cmp rcx, rdi
ja loopend
mul rcx ; factorial *= i
inc rcx
jmp loopstart
loopend:
leave
ret
Recursively in Inform 7
(it reminds you of COBOL because it's for writing text adventures; proportional font is deliberate):
To decide what number is the factorial of (n - a number):
    if n is zero, decide on one;
    otherwise decide on the factorial of (n minus one) times n.
If you want to actually call this function ("phrase") from a game you need to define an action and grammar rule:
"The factorial game" [this must be the first line of the source]
There is a room. [there has to be at least one!]
Factorialing is an action applying to a number.
Understand "factorial [a number]" as factorialing.
Carry out factorialing:
    Let n be the factorial of the number understood;
    Say "It's [n]".
C#: LINQ
public static int factorial(int n)
{
return (Enumerable.Range(1, n).Aggregate(1, (previous, value) => previous * value));
}
Erlang: tail recursive
fac(0) -> 1;
fac(N) when N > 0 -> fac(N, 1).
fac(1, R) -> R;
fac(N, R) -> fac(N - 1, R * N).
Haskell:
ones = 1 : ones
integers = head ones : zipWith (+) integers (tail ones)
factorials = head integers : zipWith (*) factorials (tail integers)
Brainf*ck
+++++
>+<[[->>>>+<<<<]>>>>[-<<<<+>>+>>]<<<<>[->>+<<]<>>>[-<[->>+<<]>>[-<<+<+>>>]<]<[-]><<<-]
Written by Michael Reitzenstein.
BASIC: old school
10 HOME
20 INPUT N
30 LET ANS = 1
40 FOR I = 1 TO N
50 ANS = ANS * I
60 NEXT I
70 PRINT ANS
Batch (NT):
#echo off
set n=%1
set result=1
for /l %%i in (%n%, -1, 1) do (
set /a result=result * %%i
)
echo %result%
Usage:
C:>factorial.bat 15
F#: Functional
Straight forward:
let rec fact x =
if x < 0 then failwith "Invalid value."
elif x = 0 then 1
else x * fact (x - 1)
Getting fancy:
let fact x = [1 .. x] |> List.fold_left ( * ) 1
Recursive Prolog
fac(0,1).
fac(N,X) :- N1 is N -1, fac(N1, T), X is N * T.
Tail Recursive Prolog
fac(0,N,N).
fac(X,N,T) :- A is N * X, X1 is X - 1, fac(X1,A,T).
fac(N,T) :- fac(N,1,T).
ruby recursive
(factorial=Hash.new{|h,k|k*h[k-1]})[1]=1
usage:
factorial[5]
=> 120
Scheme
Here is a simple recursive definition:
(define (factorial x)
(if (= x 0) 1
(* x (factorial (- x 1)))))
In Scheme tail-recursive functions use constant stack space. Here is a version of factorial that is tail-recursive:
(define factorial
(letrec ((fact (lambda (x accum)
(if (= x 0) accum
(fact (- x 1) (* accum x))))))
(lambda (x)
(fact x 1))))
Oddball examples? What about using the gamma function! Since, Gamma n = (n-1)!.
OCaml: Using Gamma
let rec gamma z =
let pi = 4.0 *. atan 1.0 in
if z < 0.5 then
pi /. ((sin (pi*.z)) *. (gamma (1.0 -. z)))
else
let consts = [| 0.99999999999980993; 676.5203681218851; -1259.1392167224028;
771.32342877765313; -176.61502916214059; 12.507343278686905;
-0.13857109526572012; 9.9843695780195716e-6; 1.5056327351493116e-7;
|]
in
let z = z -. 1.0 in
let results = Array.fold_right
(fun x y -> x +. y)
(Array.mapi
(fun i x -> if i = 0 then x else x /. (z+.(float i)))
consts
)
0.0
in
let x = z +. (float (Array.length consts)) -. 1.5 in
let final = (sqrt (2.0*.pi)) *.
(x ** (z+.0.5)) *.
(exp (-.x)) *. result
in
final
let factorial_gamma n = int_of_float (gamma (float (n+1)))
Freshman Haskell programmer
fac n = if n == 0
then 1
else n * fac (n-1)
Sophomore Haskell programmer, at MIT
(studied Scheme as a freshman)
fac = (\(n) ->
(if ((==) n 0)
then 1
else ((*) n (fac ((-) n 1)))))
Junior Haskell programmer
(beginning Peano player)
fac 0 = 1
fac (n+1) = (n+1) * fac n
Another junior Haskell programmer
(read that n+k patterns are “a disgusting part of Haskell” [1]
and joined the “Ban n+k patterns”-movement [2])
fac 0 = 1
fac n = n * fac (n-1)
Senior Haskell programmer
(voted for Nixon Buchanan Bush — “leans right”)
fac n = foldr (*) 1 [1..n]
Another senior Haskell programmer
(voted for McGovern Biafra Nader — “leans left”)
fac n = foldl (*) 1 [1..n]
Yet another senior Haskell programmer
(leaned so far right he came back left again!)
-- using foldr to simulate foldl
fac n = foldr (\x g n -> g (x*n)) id [1..n] 1
Memoizing Haskell programmer
(takes Ginkgo Biloba daily)
facs = scanl (*) 1 [1..]
fac n = facs !! n
Pointless (ahem) “Points-free” Haskell programmer
(studied at Oxford)
fac = foldr (*) 1 . enumFromTo 1
Iterative Haskell programmer
(former Pascal programmer)
fac n = result (for init next done)
where init = (0,1)
next (i,m) = (i+1, m * (i+1))
done (i,_) = i==n
result (_,m) = m
for i n d = until d n i
Iterative one-liner Haskell programmer
(former APL and C programmer)
fac n = snd (until ((>n) . fst) (\(i,m) -> (i+1, i*m)) (1,1))
Accumulating Haskell programmer
(building up to a quick climax)
facAcc a 0 = a
facAcc a n = facAcc (n*a) (n-1)
fac = facAcc 1
Continuation-passing Haskell programmer
(raised RABBITS in early years, then moved to New Jersey)
facCps k 0 = k 1
facCps k n = facCps (k . (n *)) (n-1)
fac = facCps id
Boy Scout Haskell programmer
(likes tying knots; always “reverent,” he
belongs to the Church of the Least Fixed-Point [8])
y f = f (y f)
fac = y (\f n -> if (n==0) then 1 else n * f (n-1))
Combinatory Haskell programmer
(eschews variables, if not obfuscation;
all this currying’s just a phase, though it seldom hinders)
s f g x = f x (g x)
k x y = x
b f g x = f (g x)
c f g x = f x g
y f = f (y f)
cond p f g x = if p x then f x else g x
fac = y (b (cond ((==) 0) (k 1)) (b (s (*)) (c b pred)))
List-encoding Haskell programmer
(prefers to count in unary)
arb = () -- "undefined" is also a good RHS, as is "arb" :)
listenc n = replicate n arb
listprj f = length . f . listenc
listprod xs ys = [ i (x,y) | x<-xs, y<-ys ]
where i _ = arb
facl [] = listenc 1
facl n#(_:pred) = listprod n (facl pred)
fac = listprj facl
Interpretive Haskell programmer
(never “met a language” he didn't like)
-- a dynamically-typed term language
data Term = Occ Var
| Use Prim
| Lit Integer
| App Term Term
| Abs Var Term
| Rec Var Term
type Var = String
type Prim = String
-- a domain of values, including functions
data Value = Num Integer
| Bool Bool
| Fun (Value -> Value)
instance Show Value where
show (Num n) = show n
show (Bool b) = show b
show (Fun _) = ""
prjFun (Fun f) = f
prjFun _ = error "bad function value"
prjNum (Num n) = n
prjNum _ = error "bad numeric value"
prjBool (Bool b) = b
prjBool _ = error "bad boolean value"
binOp inj f = Fun (\i -> (Fun (\j -> inj (f (prjNum i) (prjNum j)))))
-- environments mapping variables to values
type Env = [(Var, Value)]
getval x env = case lookup x env of
Just v -> v
Nothing -> error ("no value for " ++ x)
-- an environment-based evaluation function
eval env (Occ x) = getval x env
eval env (Use c) = getval c prims
eval env (Lit k) = Num k
eval env (App m n) = prjFun (eval env m) (eval env n)
eval env (Abs x m) = Fun (\v -> eval ((x,v) : env) m)
eval env (Rec x m) = f where f = eval ((x,f) : env) m
-- a (fixed) "environment" of language primitives
times = binOp Num (*)
minus = binOp Num (-)
equal = binOp Bool (==)
cond = Fun (\b -> Fun (\x -> Fun (\y -> if (prjBool b) then x else y)))
prims = [ ("*", times), ("-", minus), ("==", equal), ("if", cond) ]
-- a term representing factorial and a "wrapper" for evaluation
facTerm = Rec "f" (Abs "n"
(App (App (App (Use "if")
(App (App (Use "==") (Occ "n")) (Lit 0))) (Lit 1))
(App (App (Use "*") (Occ "n"))
(App (Occ "f")
(App (App (Use "-") (Occ "n")) (Lit 1))))))
fac n = prjNum (eval [] (App facTerm (Lit n)))
Static Haskell programmer
(he does it with class, he’s got that fundep Jones!
After Thomas Hallgren’s “Fun with Functional Dependencies” [7])
-- static Peano constructors and numerals
data Zero
data Succ n
type One = Succ Zero
type Two = Succ One
type Three = Succ Two
type Four = Succ Three
-- dynamic representatives for static Peanos
zero = undefined :: Zero
one = undefined :: One
two = undefined :: Two
three = undefined :: Three
four = undefined :: Four
-- addition, a la Prolog
class Add a b c | a b -> c where
add :: a -> b -> c
instance Add Zero b b
instance Add a b c => Add (Succ a) b (Succ c)
-- multiplication, a la Prolog
class Mul a b c | a b -> c where
mul :: a -> b -> c
instance Mul Zero b Zero
instance (Mul a b c, Add b c d) => Mul (Succ a) b d
-- factorial, a la Prolog
class Fac a b | a -> b where
fac :: a -> b
instance Fac Zero One
instance (Fac n k, Mul (Succ n) k m) => Fac (Succ n) m
-- try, for "instance" (sorry):
--
-- :t fac four
Beginning graduate Haskell programmer
(graduate education tends to liberate one from petty concerns
about, e.g., the efficiency of hardware-based integers)
-- the natural numbers, a la Peano
data Nat = Zero | Succ Nat
-- iteration and some applications
iter z s Zero = z
iter z s (Succ n) = s (iter z s n)
plus n = iter n Succ
mult n = iter Zero (plus n)
-- primitive recursion
primrec z s Zero = z
primrec z s (Succ n) = s n (primrec z s n)
-- two versions of factorial
fac = snd . iter (one, one) (\(a,b) -> (Succ a, mult a b))
fac' = primrec one (mult . Succ)
-- for convenience and testing (try e.g. "fac five")
int = iter 0 (1+)
instance Show Nat where
show = show . int
(zero : one : two : three : four : five : _) = iterate Succ Zero
Origamist Haskell programmer
(always starts out with the “basic Bird fold”)
-- (curried, list) fold and an application
fold c n [] = n
fold c n (x:xs) = c x (fold c n xs)
prod = fold (*) 1
-- (curried, boolean-based, list) unfold and an application
unfold p f g x =
if p x
then []
else f x : unfold p f g (g x)
downfrom = unfold (==0) id pred
-- hylomorphisms, as-is or "unfolded" (ouch! sorry ...)
refold c n p f g = fold c n . unfold p f g
refold' c n p f g x =
if p x
then n
else c (f x) (refold' c n p f g (g x))
-- several versions of factorial, all (extensionally) equivalent
fac = prod . downfrom
fac' = refold (*) 1 (==0) id pred
fac'' = refold' (*) 1 (==0) id pred
Cartesianally-inclined Haskell programmer
(prefers Greek food, avoids the spicy Indian stuff;
inspired by Lex Augusteijn’s “Sorting Morphisms” [3])
-- (product-based, list) catamorphisms and an application
cata (n,c) [] = n
cata (n,c) (x:xs) = c (x, cata (n,c) xs)
mult = uncurry (*)
prod = cata (1, mult)
-- (co-product-based, list) anamorphisms and an application
ana f = either (const []) (cons . pair (id, ana f)) . f
cons = uncurry (:)
downfrom = ana uncount
uncount 0 = Left ()
uncount n = Right (n, n-1)
-- two variations on list hylomorphisms
hylo f g = cata g . ana f
hylo' f (n,c) = either (const n) (c . pair (id, hylo' f (c,n))) . f
pair (f,g) (x,y) = (f x, g y)
-- several versions of factorial, all (extensionally) equivalent
fac = prod . downfrom
fac' = hylo uncount (1, mult)
fac'' = hylo' uncount (1, mult)
Ph.D. Haskell programmer
(ate so many bananas that his eyes bugged out, now he needs new lenses!)
-- explicit type recursion based on functors
newtype Mu f = Mu (f (Mu f)) deriving Show
in x = Mu x
out (Mu x) = x
-- cata- and ana-morphisms, now for *arbitrary* (regular) base functors
cata phi = phi . fmap (cata phi) . out
ana psi = in . fmap (ana psi) . psi
-- base functor and data type for natural numbers,
-- using a curried elimination operator
data N b = Zero | Succ b deriving Show
instance Functor N where
fmap f = nelim Zero (Succ . f)
nelim z s Zero = z
nelim z s (Succ n) = s n
type Nat = Mu N
-- conversion to internal numbers, conveniences and applications
int = cata (nelim 0 (1+))
instance Show Nat where
show = show . int
zero = in Zero
suck = in . Succ -- pardon my "French" (Prelude conflict)
plus n = cata (nelim n suck )
mult n = cata (nelim zero (plus n))
-- base functor and data type for lists
data L a b = Nil | Cons a b deriving Show
instance Functor (L a) where
fmap f = lelim Nil (\a b -> Cons a (f b))
lelim n c Nil = n
lelim n c (Cons a b) = c a b
type List a = Mu (L a)
-- conversion to internal lists, conveniences and applications
list = cata (lelim [] (:))
instance Show a => Show (List a) where
show = show . list
prod = cata (lelim (suck zero) mult)
upto = ana (nelim Nil (diag (Cons . suck)) . out)
diag f x = f x x
fac = prod . upto
Post-doc Haskell programmer
(from Uustalu, Vene and Pardo’s “Recursion Schemes from Comonads” [4])
-- explicit type recursion with functors and catamorphisms
newtype Mu f = In (f (Mu f))
unIn (In x) = x
cata phi = phi . fmap (cata phi) . unIn
-- base functor and data type for natural numbers,
-- using locally-defined "eliminators"
data N c = Z | S c
instance Functor N where
fmap g Z = Z
fmap g (S x) = S (g x)
type Nat = Mu N
zero = In Z
suck n = In (S n)
add m = cata phi where
phi Z = m
phi (S f) = suck f
mult m = cata phi where
phi Z = zero
phi (S f) = add m f
-- explicit products and their functorial action
data Prod e c = Pair c e
outl (Pair x y) = x
outr (Pair x y) = y
fork f g x = Pair (f x) (g x)
instance Functor (Prod e) where
fmap g = fork (g . outl) outr
-- comonads, the categorical "opposite" of monads
class Functor n => Comonad n where
extr :: n a -> a
dupl :: n a -> n (n a)
instance Comonad (Prod e) where
extr = outl
dupl = fork id outr
-- generalized catamorphisms, zygomorphisms and paramorphisms
gcata :: (Functor f, Comonad n) =>
(forall a. f (n a) -> n (f a))
-> (f (n c) -> c) -> Mu f -> c
gcata dist phi = extr . cata (fmap phi . dist . fmap dupl)
zygo chi = gcata (fork (fmap outl) (chi . fmap outr))
para :: Functor f => (f (Prod (Mu f) c) -> c) -> Mu f -> c
para = zygo In
-- factorial, the *hard* way!
fac = para phi where
phi Z = suck zero
phi (S (Pair f n)) = mult f (suck n)
-- for convenience and testing
int = cata phi where
phi Z = 0
phi (S f) = 1 + f
instance Show (Mu N) where
show = show . int
Tenured professor
(teaching Haskell to freshmen)
fac n = product [1..n]
D Templates: Functional
template factorial(int n : 1)
{
const factorial = 1;
}
template factorial(int n)
{
const factorial =
n * factorial!(n-1);
}
or
template factorial(int n)
{
static if(n == 1)
const factorial = 1;
else
const factorial =
n * factorial!(n-1);
}
Used like this:
factorial!(5)
Java 1.6: recursive, memoized (for subsequent calls)
private static Map<BigInteger, BigInteger> _results = new HashMap()
public static BigInteger factorial(BigInteger n){
if (0 >= n.compareTo(BigInteger.ONE))
return BigInteger.ONE.max(n);
if (_results.containsKey(n))
return _results.get(n);
BigInteger result = factorial(n.subtract(BigInteger.ONE)).multiply(n);
_results.put(n, result);
return result;
}
PowerShell
function factorial( [int] $n )
{
$result = 1;
if ( $n -gt 1 )
{
$result = $n * ( factorial ( $n - 1 ) )
}
$result
}
Here's a one-liner:
$n..1 | % {$result = 1}{$result *= $_}{$result}
Bash: Recursive
In bash and recursive, but with the added advantage that it deals with each iteration in a new process. The max it can calculate is !20 before overflowing, but you can still run it for big numbers if you don't care about the answer and want your system to fall over ;)
#!/bin/bash
echo $(($1 * `( [[ $1 -gt 1 ]] && ./$0 $(($1 - 1)) ) || echo 1`));

Resources