Understanding low latency jitter with respect to kernel scheduling? - linux-kernel

In Peter Lawrey's Vanilla Java blog, he demonstrates the jitter caused by busy-waiting threads on isolated vs non-isolated CPU cores in an experiment measuring the distance between consecutive calls to nanoTime. I'm trying to better understand why there's such a large spike at the 100μs range happening almost 30 times per second. He said that it has to do with the minimum time unit being 100μs and the scheduler sleeping and then waking the thread at the next time unit. However, I don't quite understand how this is causing the 100μs delay—does this mean that the minimum time quanta for the CFS is likely set to 100μs, the experiment is pre-empted and another process/thread is running for those 100μs at which point this timer experiment is then context-switched to run again?
Having a time quantum of 100μs seems extremely short, however, given that the Linux default from my understanding is set to about 40 times that. But it also seems much too long to spend 100μs running the scheduler kernel code if there's no context switching (but I could be mistaken). So I'm curious as to why this might be happening so often at 100μs spikes and is consistently reproducible in his tests.

Related

Set CPU affinity for profiling

I am working on a calculation intensive C# project that implements several algorithms. The problem is that when I want to profile my application, the time it takes for a particular algorithm varies. For example sometimes running the algorithm 100 times takes about 1100 ms and another time running 100 times takes much more time like 2000 or even 3000 ms. It may vary even in the same run. So it is impossible to measure improvement when I optimize a piece of code. It's just unreliable.
Here is another run:
So basically I want to make sure one CPU is dedicated to my app. The PC has an old dual core Intel E5300 CPU running on Windows 7 32 bit. So I can't just set process affinity and forget about one core forever. It would make the computer very slow for daily tasks. I need other apps to use a specific core when I desire and the when I'm done profiling, the CPU affinities come back to normal. Having a bat file to do the task would be a fantastic solution.
My question is: Is it possible to have a bat file to set process affinity for every process on windows 7?
PS: The algorithm is correct and every time runs the same code path. I created some object pool so after first run, zero memory is allocated. I also profiled memory allocation with dottrace and it showed no allocation after first run. So I don't believe GC is triggered when the algorithm is working. Physical memory is available and system is not running low on RAM.
Result: The answer by Chris Becke does the job and sets process affinities exactly as intended. It resulted in more uniform results specially when background apps like visual studio and dottrace are running. Further investigation into the divergent execution time revealed that the root for the unpredictability is CPU overheat. The CPU overheat alarm was off while the temperature was over 100C! So after fixing the malfunctioning fan, the results became completely uniform.
You mean SetProcessAffinityMask?
I see this question, while tagged windows, is c#, so... I see the System.Diagnostics.Process object has a ThreadAffinity member that should perform the same function.
I am just not sure that this will stabilize the CPU times quite in the way you expect. A single busy task that is not doing IO should remain scheduled on the same core anyway unless another thread interrupts it, so I think your variable times are more due to other threads / processes interrupting your algorithm than the OS randomly shunting your thread to a different core - so unless you set the affinity for all other threads in the system to exclude your preferred core I can't see this helping.

Win32 game loop that doesn't spike the CPU

There are plenty of examples in Windows of applications triggering code at fairly high and stable framerates without spiking the CPU.
WPF/Silverlight/WinRT applications can do this, for example. So can browsers and media players. How exactly do they do this, and what API calls would I make to achieve the same effect from a Win32 application?
Clock polling doesn't work, of course, because that spikes the CPU. Neither does Sleep(), because you only get around 50ms granularity at best.
They are using multimedia timers. You can find information on MSDN here
Only the view is invalidated (f.e. with InvalidateRect)on each multimedia timer event. Drawing happens in the WM_PAINT / OnPaint handler.
Actually, there's nothing wrong with sleep.
You can use a combination of QueryPerformanceCounter/QueryPerformanceFrequency to obtain very accurate timings and on average you can create a loop which ticks forward on average exactly when it's supposed to.
I have never seen a sleep to miss it's deadline by as much as 50 ms however, I've seen plenty of naive timers that drift. i.e. accumalte a small delay and conincedentally updates noticable irregular intervals. This is what causes uneven framerates.
If you play a very short beep on every n:th frame, this is very audiable.
Also, logic and rendering can be run independently of each other. The CPU might not appear to be that busy, but I bet you the GPU is hard at work.
Now, about not hogging the CPU. CPU usage is just a break down of CPU time spent by a process under a given sample (the thread schedulerer actually tracks this). If you have a target of 30 Hz for your game. You're limited to 33ms per frame, otherwise you'll be lagging behind (too slow CPU or too slow code), if you can't hit this target you won't be running at 30 Hz and if you hit it under 33ms then you can yield processor time, effectivly freeing up resources.
This might be an intresting read for you as well.
On a side note, instead of yielding time you could effecivly be doing prepwork for future computations. Some games when they are not under the heaviest of loads actually do things as sorting and memory defragmentation, a little bit here and there, adds up in the end.

dotTrace - what profiling settings should I use for my desktop app?

When using dotTrace, I have to pick a profiling mode and a time measurement method. Profiling modes are:
Tracing
Line-by-line
Sampling
And time measurement methods are:
Wall time (performance counter)
Thread time
Wall time (CPU instruction)
Tracing and line-by-line can't use thread time measurement. But that still leaves me with seven different combinations to try. I've now read the dotTrace help pages on these well over a dozen times, and I remain no more knowledgeable than I started out about which one to pick.
I'm working on a WPF app that reads Word docs, extracts all the paragraphs and styles, and then loops through that extracted content to pick out document sections. I'm trying to optimize this process. (Currently it takes well over an hour to complete, so I'm trying to profile it for a given length of time rather than until it finishes.)
Which profiling and time measurement types would give me the best results? Or if the answer is "It depends", then what does it depend on? What are the pros and cons of a given profiling mode or time measurement method?
Profiling types:
Sampling: fastest but least accurate profiling-type, minimum profiler overhead. Essentially equivalent to pausing the program many times a second and viewing the stacktrace; thus the number of calls per method is approximate. Still useful for identifying performance bottlenecks at the method-level.
Snapshots captured in sampling mode occupy a lot less space on disk (I'd say 5-6 less space.)
Use for initial assessment or when profiling a long-running application (which sounds like your case.)
Tracing: Records the duration taken for each method. App under profiling runs slower but in return, dotTrace shows exact number of calls of each function, and function timing info is more accurate. This is good for diving into details of a problem at the method-level.
Line-by-line: Profiles the program on a per-line basis. Largest resource hog but most fine-grained profiling results. Slows the program way down. The preferred tactic here is to initially profile using another type, and then hand-pick functions for line-by-line profiling.
As for meter kinds, I think they are described quite well in Getting started with dotTrace Performance by the great Hadi Hariri.
Wall time (CPU Instruction): This is the simplest and fastest way to measure wall time (that is, the
time we observe on a wall clock). However, on some older multi-core processors this may produce
incorrect results due to the cores timers being desynchronized. If this is the case, it is recommended
to use Performance Counter.
Wall time (Performance Counter): Performance counters is part of the Windows API and it allows
taking time samples in a hardware-independent way. However, being an API call, every measure takes
substantial time and therefore has an impact on the profiled application.
Thread time: In a multi-threaded application concurrent threads contribute to each other's wall time.
To avoid such interference we can use thread time meter which makes system API calls to get the
amount of time given by the OS scheduler to the thread. The downsides are that taking thread time
samples is much slower than using CPU counter and the precision is also limited by the size of
quantum used by thread scheduler (normally 10ms). This mode is only supported when the Profiling
Type is set to Sampling
However they don't differ too much.
I'm not a wizard in profiling myself but in your case I'd start with sampling to get a list of functions that take ridiculously long to execute, and then I'd mark them for line-by-line profiling.

Is 16 milliseconds an unusually long length of time for an unblocked thread running on Windows to be waiting for execution?

Recently I was doing some deep timing checks on a DirectShow application I have in Delphi 6, using the DSPACK components. As part of my diagnostics, I created a Critical Section class that adds a time-out feature to the usual Critical Section object found in most Windows programming languages. If the time duration between the first Acquire() and the last matching Release() is more than X milliseconds, an Exception is thrown.
Initially I set the time-out at 10 milliseconds. The code I have wrapped in Critical Sections is pretty fast using mostly memory moves and fills for most of the operations contained in the protected areas. Much to my surprise I got fairly frequent time-outs in seemingly random parts of the code. Sometimes it happened in a code block that iterates a buffer list and does certain quick operations in sequence, other times in tiny sections of protected code that only did a clearing of a flag between the Acquire() and Release() calls. The only pattern I noticed is that the durations found when the time-out occurred were centered on a median value of about 16 milliseconds. Obviously that's a huge amount of time for a flag to be set in the latter example of an occurrence I mentioned above.
So my questions are:
1) Is it possible for Windows thread management code to, on a fairly frequent basis (about once every few seconds), to switch out an unblocked thread and not return to it for 16 milliseconds or longer?
2) If that is a reasonable scenario, what steps can I take to lessen that occurrence and should I consider elevating my thread priorities?
3) If it is not a reasonable scenario, what else should I look at or try as an analysis technique to diagnose the real problem?
Note: I am running on Windows XP on an Intel i5 Quad Core with 3 GB of memory. Also, the reason why I need to be fast in this code is due to the size of the buffer in milliseconds I have chosen in my DirectShow filter graphs. To keep latency at a minimum audio buffers in my graph are delivered every 50 milliseconds. Therefore, any operation that takes a significant percentage of that time duration is troubling.
Thread priorities determine when ready threads are run. There's, however, a starvation prevention mechanism. There's a so-called Balance Set Manager that wakes up every second and looks for ready threads that haven't been run for about 3 or 4 seconds, and if there's one, it'll boost its priority to 15 and give it a double the normal quantum. It does this for not more than 10 threads at a time (per second) and scans not more than 16 threads at each priority level at a time. At the end of the quantum, the boosted priority drops to its base value. You can find out more in the Windows Internals book(s).
So, it's a pretty normal behavior what you observe, threads may be not run for seconds.
You may need to elevate priorities or otherwise consider other threads that are competing for the CPU time.
sounds like normal windows behaviour with respect to timer resolution unless you explicitly go for some of the high precision timers. Some details in this msdn link
First of all, I am not sure if Delphi's Now is a good choice for millisecond precision measurements. GetTickCount and QueryPerformanceCoutner API would be a better choice.
When there is no collision in critical section locking, everything runs pretty fast, however if you are trying to enter critical section which is currently locked on another thread, eventually you hit a wait operation on an internal kernel object (mutex or event), which involves yielding control on the thread and waiting for scheduler to give control back later.
The "later" above would depend on a few things, including priorities mentioned above, and there is one important things you omitted in your test - what is the overall CPU load at the time of your testing. The more is the load, the less chances to get the thread continue execution soon. 16 ms time looks perhaps a bit still within reasonable tolerance, and all in all it might depends on your actual implementation.

How do I get repeatable CPU-bound benchmark runtimes on Windows?

We sometimes have to run some CPU-bound tests where we want to measure runtime. The tests last in the order of a minute. The problem is that from run to run the runtime varies by quite a lot (+/- 5%). We suspect that the variation is caused by activity from other applications/services on the system, eg:
Applications doing housekeeping in their idle time (e.g. Visual Studio updating IntelliSense)
Filesystem indexers
etc..
What tips are there to make our benchmark timings more stable?
Currently we minimize all other applications, run the tests at "Above Normal" priority, and not touch the machine while it runs the test.
The usual approach is to perform lots of repetitions and then discard outliers. So, if the distractions such as the disk indexer only crops up once every hour or so, and you do 5 minutes runs repeated for 24 hours, you'll have plenty of results where nothing got in the way. It is a good idea to plot the probability density function to make sure you are understand what is going on. Also, if you are not interested in startup effects such as getting everything into the processor caches then make sure the experiment runs long enough to make them insignificant.
First of all, if it's just about benchmarking the application itself, you should use CPU time, not wallclock time as a measure. That's then (almost) free from influences of what the other processes or the system do. Secondly, as Dickon Reed pointed out, more repetitions increase confidence.
Quote from VC++ team blog, how they do performance tests:
To reduce noise on the benchmarking machines, we take several steps:
Stop as many services and processes as possible.
Disable network driver: this will turn off the interrupts from NIC caused by >broadcast packets.
Set the test’s processor affinity to run on one processor/core only.
Set the run to high priority which will decrease the number of context switches.
Run the test for several iterations.
I do the following:
Call the method x times and measure the time
Do this n times and calculate the mean and standard deviation of those measurements
Try to get the x to a point where you're at a >1 second per measurement. This will reduce the noise a bit.
The mean will tell you the average performance of your test and the standard deviation the stability of your test/measurements.
I also set my application at a very high priority, and when I test a single-thread algorithm I associate it with one cpu core to make sure there is not scheduling overhead.
This code demonstrates how to do this in .NET:
Thread.CurrentThread.Priority = ThreadPriority.Highest;
Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.RealTime;
if (Environment.ProcessorCount > 1)
{
Process.GetCurrentProcess().ProcessorAffinity =
new IntPtr(1 << (Environment.ProcessorCount - 1));
}

Resources