how to use vscode snippets to generate my own return code? - go

if I have a struct, like
type Person struct{
Name string
some fields here
}
how to generate code like this when I create a method
func (p *Person) foo() (Person,error){
...
return Person{},err
}
and do need some snippets like this when I want to catch some error
if err != nil {
return Person{}, err // some struct or []struct here
}

You could start using snippets in VS Code. Ensure "editor.tabCompletion" is enabled in settings.json (or use Ctrl+Space).
There are list of all snippets, you could add a new throug request for feature.
For example use "iferr" to generate error check. For sure it will not grab the name of your struct, but at least it will help you a bit :)
If it is ok for you to have snippet locally, just go to File -> Preferences -> User snippets. Choose GO language and insert yours.

Related

GoDoc Example function for type/struct functions

Problem
I have written some example functions located in a *_test.go file to help clarify context for standalone public functions without issue. The problem on displaying comes when writing example functions for functions tied to a type.
Example
Here's a basic example of what I'm encountering.
Say we have a function in main.go like below:
type Client struct {
user string
ip string
}
func (c *Client) SendNotification(message string) error {
return nil
}
I want to create an example function for such in main_test.go, like below
func ExampleSendNotification() {
//Showoff code here
}
VSCode throws an error for that specific example, saying "ExampleSendNotification refers to unknown identifier: SendNotification". Also, it just does not appear as an example when running the godoc.
I've also tried this format:
func (c *Client) ExampleSendNotification() {
//Showoff code here
}
But then it just removes it as a test in VSCode, and doesn't appear
I found the answer just as I was finishing writing this. Thought I would still post for anybody else.
The trick is writing Example[Type]_[Method], so practically in my example, that would look like:
func ExampleClient_SendNotification() {
//Showoff code here
}

How can I separate generated code package and user code but have them accessible from one place in code

I am newer to golang, so I have some courses that I bought from udemy to help break me into the language. One of them I found very helpful for a general understanding as I took on a project in the language.
In the class that I took, all of the sql related functions were in the sqlc folder with the structure less broken out:
sqlc
generatedcode
store
One of those files is a querier that is generated by sqlc that contains an interface with all of the methods that were generated. Here is the general idea of what it currently looks like: https://github.com/techschool/simplebank/tree/master/db/sqlc
package db
import (
"context"
"github.com/google/uuid"
)
type Querier interface {
AddAccountBalance(ctx context.Context, arg AddAccountBalanceParams) (Account, error)
CreateAccount(ctx context.Context, arg CreateAccountParams) (Account, error)
...
}
var _ Querier = (*Queries)(nil)
Would it be possible to wrap both what sqlc generates AND any queries that a developer creates (dynamic queries) into a single querier? I'm also trying to have it so that the sqlc generated code is in its own folder. The structure I am aiming for is:
sql
sqlc
generatedcode
store - (wraps it all together)
dynamicsqlfiles
This should clear up what a I mean by store: https://github.com/techschool/simplebank/blob/master/db/sqlc/store.go
package db
import (
"context"
"database/sql"
"fmt"
)
// Store defines all functions to execute db queries and transactions
type Store interface {
Querier
TransferTx(ctx context.Context, arg TransferTxParams) (TransferTxResult, error)
}
// SQLStore provides all functions to execute SQL queries and transactions
type SQLStore struct {
db *sql.DB
*Queries
}
// NewStore creates a new store
func NewStore(db *sql.DB) Store {
return &SQLStore{
db: db,
Queries: New(db),
}
}
I'm trying to run everything through that store (both generated and my functions), so I can make a call similar to the CreateUser function in this file (server.store.): https://github.com/techschool/simplebank/blob/master/api/user.go
arg := db.CreateUserParams{
Username: req.Username,
HashedPassword: hashedPassword,
FullName: req.FullName,
Email: req.Email,
}
user, err := server.store.CreateUser(ctx, arg)
if err != nil {
if pqErr, ok := err.(*pq.Error); ok {
switch pqErr.Code.Name() {
case "unique_violation":
ctx.JSON(http.StatusForbidden, errorResponse(err))
return
}
}
ctx.JSON(http.StatusInternalServerError, errorResponse(err))
return
}
I've tried creating something that houses another querier interface that embeds the generated one, then creating my own db.go that uses the generated DBTX interface but has its own Queries struct, and New function. It always gives me an error that the Queries struct I created aren't implementing the functions I made, despite having it implemented in one of the custom methods I made.
I deleted that branch, and have been clicking through the simplebank project linked above to see if I can find another way this could be done, or if I missed something. If it can't be done, that's okay. I'm just using this as a good opportunity to learn a little more about the language, and keep some code separated if possible.
UPDATE:
There were only a few pieces I had to change, but I modified the store.go to look more like:
// sdb is imported, but points to the generated Querier
// Store provides all functions to execute db queries and transactions
type Store interface {
sdb.Querier
DynamicQuerier
}
// SQLStore provides all functions to execute SQL queries and transactions
type SQLStore struct {
db *sql.DB
*sdb.Queries
*dynamicQueries
}
// NewStore creates a new Store
func NewStore(db *sql.DB) Store {
return &SQLStore{
db: db,
Queries: sdb.New(db),
dynamicQueries: New(db),
}
}
Then just created a new Querier and struct for the methods I would be creating. Gave them their own New function, and tied it together in the above. Before, I was trying to figure out a way to reuse as much of the generated code as possible, which I think was the issue.
Why I wanted the Interface:
I wanted a structure that separated the files I would be working in more from the files that I would never touch (generated). This is the new structure:
I like how the generated code put everything in the Querier interface, then checked that anything implementing it satisfied all of the function requirements. So I wanted to replicate that for the dynamic portion which I would be creating on my own.
It might be complicating it a bit more than it would 'NEED' to be, but it also provides an additional set of error checking that is nice to have. And in this case, even while maybe not necessary, it ended up being doable.
Would it be possible to wrap both what sqlc generates AND any queries that a developer creates (dynamic queries) into a single querier?
If I'm understanding your question correctly I think that you are looking for something like the below (playground):
package main
import (
"context"
"database/sql"
)
// Sample SQL C Code
type DBTX interface {
ExecContext(context.Context, string, ...interface{}) (sql.Result, error)
PrepareContext(context.Context, string) (*sql.Stmt, error)
QueryContext(context.Context, string, ...interface{}) (*sql.Rows, error)
QueryRowContext(context.Context, string, ...interface{}) *sql.Row
}
type Queries struct {
db DBTX
}
func (q *Queries) DeleteAccount(ctx context.Context, id int64) error {
// _, err := q.db.ExecContext(ctx, deleteAccount, id)
// return err
return nil // Pretend that this always works
}
type Querier interface {
DeleteAccount(ctx context.Context, id int64) error
}
//
// Your custom "dynamic" queries
//
type myDynamicQueries struct {
db DBTX
}
func (m *myDynamicQueries) GetDynamicResult(ctx context.Context) error {
// _, err := q.db.ExecContext(ctx, deleteAccount, id)
// return err
return nil // Pretend that this always works
}
type myDynamicQuerier interface {
GetDynamicResult(ctx context.Context) error
}
// Combine things
type allDatabase struct {
*Queries // Note: You could embed this directly into myDynamicQueries instead of having a seperate struct if that is your preference
*myDynamicQueries
}
type DatabaseFunctions interface {
Querier
myDynamicQuerier
}
func main() {
// Basic example
var db DatabaseFunctions
db = getDatabase()
db.DeleteAccount(context.Background(), 0)
db.GetDynamicResult(context.Background())
}
// getDatabase - Perform whatever is needed to connect to database...
func getDatabase() allDatabase {
sqlc := &Queries{db: nil} // In reality you would use New() to do this!
myDyn := &myDynamicQueries{db: nil} // Again it's often cleaner to use a function
return allDatabase{Queries: sqlc, myDynamicQueries: myDyn}
}
The above is all in one file for simplicity but could easily pull from multiple packages e.g.
type allDatabase struct {
*generatedcode.Queries
*store.myDynamicQueries
}
If this does not answer your question then please show one of your failed attempts (so we can see where you are going wrong).
One general comment - do you really need the interface? A common recommendation is "Accept interfaces, return structs". While this may not always apply I suspect you may be introducing interfaces where they are not really necessary and this may add unnecessary complexity.
I thought that the Store, which was housing both Queriers, was tying it all together. Can you explain a little with the example above (in the question post) why it's not necessary? How does SQLStore get access to all of the Querier interface functions?
The struct SQLStore is what is "tying it all together". As per the Go spec:
Given a struct type S and a named type T, promoted methods are included in the method set of the struct as follows:
If S contains an embedded field T, the method sets of S and *S both include promoted methods with receiver T. The method set of *S also includes promoted methods with receiver *T.
If S contains an embedded field *T, the method sets of S and *S both include promoted methods with receiver T or *T.
So an object of type SQLStore:
type SQLStore struct {
db *sql.DB
*sdb.Queries
*dynamicQueries
}
var foo SQLStore // Assume that we are actually providing values for all fields
Will implement all of the methods of sdb.Queries and, also, those in dynamicQueries (you can also access the sql.DB members via foo.db.XXX). This means that you can call foo.AddAccountBalance() and foo.MyGenericQuery() (assuming that is in dynamicQueries!) etc.
The spec says "In its most basic form an interface specifies a (possibly empty) list of methods". So you can think of an interface as a list of functions that must be implemented by whatever implementation (e.g. struct) you assign to the interface (the interface itself does not implement anything directly).
This example might help you understand.
Hopefully that helps a little (as I'm not sure which aspect you don't understand I'm not really sure what to focus on).

Go: Access a struct's properties through an interface{}

I am having trouble in accessing the one struct's properties (named Params) in different file.
please consider x.go where i invoke a function(CreateTodo)
type Params struct {
Title string `json:"title"`
IsCompleted int `json:is_completed`
Status string `json:status`
}
var data = &Params{Title:"booking hotel", IsCompleted :0,Status:"not started"}
isCreated := todoModel.CreateTodo(data) // assume todoModel is imported
now CreateTodo is a method on a struct (named Todo) in different file lets say y.go
type Todo struct {
Id int `json:todo_id`
Title string `json:"title"`
IsCompleted int `json:is_completed`
Status string `json:status`
}
func (mytodo Todo)CreateTodo(data interface{}) bool{
// want to access the properties of data here
fmt.Println(data.Title)
return true
}
Now I just want to use properties of data in CreateTodo function in y.go.
But i am not able to do so and getting following error
data.Title undefined (type interface {} is interface with no methods)
I am sure issue is around accepting struct as an empty interface but i am not able to figure out.
Please help here.Thanks
So you have one of two options, depending on your model:
#1
Switch to data *Params instead of data interface{} as suggested in another answer but it looks like you are expecting different types in this function, if so; check option #2 below.
#2
Use Type switches as follows:
func (t Todo) CreateTodo(data interface{}) bool {
switch x := data.(type) {
case Params:
fmt.Println(x.Title)
return true
// Other expected types
default:
// Unexpected type
return false
}
}
P.S. Be careful with your json tags: it should be json:"tagName". Notice the ""! Check go vet.
You could just type the function parameter:
func (mytodo Todo)CreateTodo(data *Params) bool{
// want to access the properties of data here
fmt.Println(data.Title)
return true
}
See: https://play.golang.org/p/9N8ixBaSHdP
If you want to operate on a Params (or *Params), you must do that.
If you want to operate on an opaque type hidden behind an interface{}, you must do that.
In short, you cannot peek behind the curtain without peeking behind the curtain. Either expose the actual type Params, so that you can look at it, or keep all the code that does look at it elsewhere. The "keep the code elsewhere" is where interface really shines, because it allows you to declare that something otherwise-opaque has behaviors and ask for those behaviors to happen:
type Titler interface {
GetTitle() string
}
If Params has a GetTitle function, it becomes a Titler.
You can now define your CreateTodo as a function that takes a Titler, and then you can pass &data to this function.
This structure is overall quite klunky and it seems much more likely that Todo itself should be an embeddable struct instead, but see a more complete example starting from a stripped-down version of your sample code here, in the Go Playground.

Linter that checks that all fields are explicitly set in struct initialisation

I want to have a static assert or linter for my go code that checks that I do not – by mistake – initialise the structs in my config file with default values for any field. I want everything to be set explicitly.
Is there a way to achieve this?
EDIT: Clarified question.
Check out the validator package.
https://gopkg.in/go-playground/validator.v9
We use it extensively in our code to validate structs.
e.g.
type Config struct {
Url string `validate:"required"`
MaxHops int `validate:"omitempty,min=0"`
MaxTerms int `validate:"omitempty,min=0"`
MaxCost float64 `validate:"omitempty,min=0"`
}
func Init(cfg *Config) error {
if err := validator.New().Struct(cfg); err != nil {
return errors.Wrap(err, "error in config")
}
//do something
}
You can use https://github.com/GaijinEntertainment/go-exhaustruct for it.
In golangci-lint, this linter is called exhaustruct and is disabled by default (see documentation).

Why embedded structs are not decoded when there is an Unmarshal implementation?

I have a type ServiceAccount which embeds two other types (User and Policy). However it seems the fields of the User type are totally ignored due the Unmarshaler implementation of the Policy type.
Is there any good reason for this behaviour? It looks like a bug to me because the json package can see through reflection that we have two types embedded and not only the type Policy.
I'm aware that I can "fix" the issue by implementing the Unmarshaler interface on type ServiceAccount too.
package main
import (
"encoding/json"
"fmt"
)
type ServiceAccount struct {
User
Policy
}
type User struct {
UserID string `json:"userID"`
}
type Policy struct {
Scopes string `json:"scopes,omitempty"`
}
// PolicyRaw is the Policy type as received from client.
type PolicyRaw struct {
Scopes string `json:"scopes,omitempty"`
}
func main() {
s := `{"userID":"xyz", "scopes":"some scopes"}`
srvAcc := &ServiceAccount{}
if err := json.Unmarshal([]byte(s), srvAcc); err != nil {
panic(err)
}
fmt.Printf("srvAcc %v", *srvAcc)
}
func (p *Policy) UnmarshalJSON(b []byte) error {
pr := new(PolicyRaw)
if err := json.Unmarshal(b, pr); err != nil {
return err
}
p.Scopes = pr.Scopes
return nil
}
Execute
I don't think it's a bug but just just how interfaces and embedding works. It just happens not to be what you want/expect here.
json.Unmarshal figures out to use the UnmarshalJSON method via this line:
if u, ok := v.Interface().(Unmarshaler); ok
As you know, something implements an interface if it has the right method set which *Policy and *ServiceAccount do. So it's expected that JSON decoding of the the outer type would just call the appropriate method and think it's done.
Interestingly, if you were to experiment and add a dummy method such as:
func (u *User) UnmarshalJSON([]byte) error {return errors.New("not impl")}
then although *User and *Policy would now both implement the interface,
*ServiceAccount will no longer implement that interface. The reason is clear if you try and explicitly call srvAcc.UnmarshalJSON which would then give a compiler error of "ambiguous selector srvAcc.UnmarshalJSON". Without such a call the code is legal and the method is just excluded from the method set.
So I think the solution is one of:
Just don't embed things that implement json.Unmarshaller if you want to marshal the result, e.g. use a named field instead.
Make sure you explicitly implement json.Unmarshaller for the outer type yourself when doing such embedding (e.g. add an UnmarshalJSON method to *ServiceAccount).
Make sure at least two embedded things implement json.Unmarshaller and then they'll work individually¹ but the "outer" type will get the default behaviour.
The last option seems like a hack to me. (And btw could be done on purpose with something like:
type ServiceAccount struct {
User
Policy
dummyMarshaller
}
type dummyMarshaller struct{}
func (dummyMarshaller) MarshalJSON([]byte) error {panic("ouch")}
but that looks really hacky to me).
See also:
https://golang.org/ref/spec#Struct_types
https://golang.org/doc/effective_go.html#embedding
¹ Further testing shows that decoding such anonymous (i.e. embedded fields), that their UnmarshalJSON methods do not get called.

Resources