why is this dynamic programming answer slow? - ruby

Why is this solution slow? I'm guessing it's because the sub-problems are not solved at the right time when they should be. What am I doing wrong?
def longest_palindrome(s)
len = s.length
longest_start = 0
longest_end = 0
mem = Array.new(len) { Array.new(len, -1) }
(0..(len - 1)).each do |i|
(i..(len - 1)).each do |j|
if util(i, j, s, mem) && j - i > longest_end - longest_start
longest_start = i
longest_end = j
end
end
end
s[longest_start..longest_end]
end
def util(i, j, s, mem)
return mem[i][j] if mem[i][j] != -1
judge = s[i] == s[j]
mem[i][j] = j - i >= 2 ? util(i+1, j-1, s, mem) && judge : judge
end

I wouldn't call your solution slow, although of course that is an entirely arbitrary characterization.
That said, I thought I might test user1934428's expectation a bit, and see whether your code is indeed faster for very short palindromes, while further testing your code against a simpler solution that just loops around #each_cons and uses #reverse to check for palindromes.
Here's the method I came up with:
def longest_palindrome2(str)
longest = str.size
loop do
str.chars.each_cons(longest) do |substr|
return substr.join if substr == substr.reverse || longest == 1
end
longest -= 1
end
end
I tested both your and my solution with two fairly long strings, one with a very short palindrome (x with a longest palindrome of three characters) and one with quite a long one (y, where the longest palindrome is the entire 125-character string):
x = 'alkneowinlsoirneleibesemssooeineiiqkwjviowrsitheixwlelajsdk awjlk;ja ;kja ;lk jasdkj a;lskdja pwoeiarjpowiecjpnaowiejcnpaosijcrnpoeirjn'
t = Time.now()
10.times { longest_palindrome(x) }
p Time.now() - t
t = Time.now()
10.times { longest_palindrome2(x) }
p Time.now() - t
y = 'satorarepotenetoperarotassatorarepotenetoperarotassatorarepotenetoperarotassatorarepotenetoperarotassatorarepotenetoperarotas'
t = Time.now()
10.times { longest_palindrome(y) }
p Time.now() - t
t = Time.now()
10.times { longest_palindrome2(y) }
p Time.now() - t
I got these results:
0.109101
0.266618
0.094408
0.000618
As it turns out, yours is a bit faster with the long palindrome, while mine is a great deal faster. Further, yours is significantly faster than mine with the short palindrome, while mine is significantly faster than yours with the long palindrome.
So, mine varies a great deal depending on how long the palindrome is (which makes sense, because the number of iterations it has to do increases very rapidly as the size of the longest palindrome decreases). Yours performs much more consistently than mine as the size of the result varies.
In other words, whether I would call your solution slow depends on how long the longest palindrome is relative to the size of the input string.

Related

Python Codility Frog River One time complexity

So this is another approach to probably well-known codility platform, task about frog crossing the river. And sorry if this question is asked in bad manner, this is my first post here.
The goal is to find the earliest time when the frog can jump to the other side of the river.
For example, given X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
the function should return 6.
Example test: (5, [1, 3, 1, 4, 2, 3, 5, 4])
Full task content:
https://app.codility.com/programmers/lessons/4-counting_elements/frog_river_one/
So that was my first obvious approach:
def solution(X, A):
lista = list(range(1, X + 1))
if X < 1 or len(A) < 1:
return -1
found = -1
for element in lista:
if element in A:
if A.index(element) > found:
found = A.index(element)
else: return -1
return found
X = 5
A = [1,2,4,5,3]
solution(X,A)
This solution is 100% correct and gets 0% in performance tests.
So I thought less lines + list comprehension will get better score:
def solution(X, A):
if X < 1 or len(A) < 1:
return -1
try:
found = max([ A.index(element) for element in range(1, X + 1) ])
except ValueError:
return -1
return found
X = 5
A = [1,2,4,5,3]
solution(X,A)
This one also works and has 0% performance but it's faster anyway.
I also found solution by deanalvero (https://github.com/deanalvero/codility/blob/master/python/lesson02/FrogRiverOne.py):
def solution(X, A):
# write your code in Python 2.6
frog, leaves = 0, [False] * (X)
for minute, leaf in enumerate(A):
if leaf <= X:
leaves[leaf - 1] = True
while leaves[frog]:
frog += 1
if frog == X: return minute
return -1
This solution gets 100% in correctness and performance tests.
My question arises probably because I don't quite understand this time complexity thing. Please tell me how the last solution is better from my second solution? It has a while loop inside for loop! It should be slow but it's not.
Here is a solution in which you would get 100% in both correctness and performance.
def solution(X, A):
i = 0
dict_temp = {}
while i < len(A):
dict_temp[A[i]] = i
if len(dict_temp) == X:
return i
i += 1
return -1
The answer already been told, but I'll add an optional solution that i think might help you understand:
def save_frog(x, arr):
# creating the steps the frog should make
steps = set([i for i in range(1, x + 1)])
# creating the steps the frog already did
froggy_steps = set()
for index, leaf in enumerate(arr):
froggy_steps.add(leaf)
if froggy_steps == steps:
return index
return -1
I think I got the best performance using set()
take a look at the performance test runtime seconds and compare them with yours
def solution(X, A):
positions = set()
seconds = 0
for i in range(0, len(A)):
if A[i] not in positions and A[i] <= X:
positions.add(A[i])
seconds = i
if len(positions) == X:
return seconds
return -1
The amount of nested loops doesn't directly tell you anything about the time complexity. Let n be the length of the input array. The inside of the while-loop needs in average O(1) time, although its worst case time complexity is O(n). The fast solution uses a boolean array leaves where at every index it has the value true if there is a leaf and false otherwise. The inside of the while-loop during the entire algotihm is excetuded no more than n times. The outer for-loop is also executed only n times. This means the time complexity of the algorithm is O(n).
The key is that both of your initial solutions are quadratic. They involve O(n) inner scans for each of the parent elements (resulting in O(n**2)).
The fast solution initially appears to suffer the same fate as it's obvious it contains a loop within a loop. But the inner while loop does not get fully scanned for each 'leaf'. Take a look at where 'frog' gets initialized and you'll note that the while loop effectively picks up where it left off for each leaf.
Here is my 100% solution that considers the sum of numeric progression.
def solution(X, A):
covered = [False] * (X+1)
n = len(A)
Sx = ((1+X)*X)/2 # sum of the numeric progression
for i in range(n):
if(not covered[A[i]]):
Sx -= A[i]
covered[A[i]] = True
if (Sx==0):
return i
return -1
Optimized solution from #sphoenix, no need to compare two sets, it's not really good.
def solution(X, A):
found = set()
for pos, i in enumerate(A, 0):
if i <= X:
found.add(i)
if len(found) == X:
return pos
return -1
And one more optimized solution for binary array
def solution(X, A):
steps, leaves = X, [False] * X
for minute, leaf in enumerate(A, 0):
if not leaves[leaf - 1]:
leaves[leaf - 1] = True
steps -= 1
if 0 == steps:
return minute
return -1
The last one is better, less resources. set consumes more resources compared to binary list (memory and CPU).
def solution(X, A):
# if there are not enough items in the list
if X > len(A):
return -1
# else check all items
else:
d = {}
for i, leaf in enumerate(A):
d[leaf] = i
if len(d) == X:
return i
# if all else fails
return -1
I tried to use as much simple instruction as possible.
def solution(X, A):
if (X > len(A)): # check for no answer simple
return -1
elif(X == 1): # check for single element
return 0
else:
std_set = {i for i in range(1,X+1)} # list of standard order
this_set = set(A) # set of unique element in list
if(sum(std_set) > sum(this_set)): # check for no answer complex
return -1
else:
for i in range(0, len(A) - 1):
if std_set:
if(A[i] in std_set):
std_set.remove(A[i]) # remove each element in standard set
if not std_set: # if all removed, return last filled position
return(i)
I guess this code might not fulfill runtime but it the simplest I could think of
I am using OrderedDict from collections and sum of first n numbers to check the frog will be able to cross or not.
def solution(X, A):
from collections import OrderedDict as od
if sum(set(A))!=(X*(X+1))//2:
return -1
k=list(od.fromkeys(A).keys())[-1]
for x,y in enumerate(A):
if y==k:
return x
This code gives 100% for correctness and performance, runs in O(N)
def solution(x, a):
# write your code in Python 3.6
# initialize all positions to zero
# i.e. if x = 2; x + 1 = 3
# x_positions = [0,1,2]
x_positions = [0] * (x + 1)
min_time = -1
for k in range(len(a)):
# since we are looking for min time, ensure that you only
# count the positions that matter
if a[k] <= x and x_positions[a[k]] == 0:
x_positions[a[k]] += 1
min_time = k
# ensure that all positions are available for the frog to jump
if sum(x_positions) == x:
return min_time
return -1
100% performance using sets
def solution(X, A):
positions = set()
for i in range(len(A)):
if A[i] not in positions:
positions.add(A[i])
if len(positions) == X:
return i
return -1

How do I find the lowest common multiple of two numbers?

I know this is a classic interview question, but here is my quick attempt at creating a function which returns the lowest common multiple of two numbers, something I never have to do in my day job:
def calc_common_multiplyer(int_low, int_high)
i = 1
int_high_res = []
while true
int_high_res << int_high * i
if int_high_res.include?(int_low * i)
return int_low * i
end
i = i+1
end
end
I feel that this is very clunky. Is there a more efficient or standard solution?
I'd do this in Ruby:
x.lcm(y)
:)
First calculate the greatest common divisor (for example with the Euclidean algorithm), then
lcm(a,b) = if a == 0 && b == 0 then return 0 else return (a*b)/gcd(a,b)
def find_lcm(n,m)
n, m = m, n if m < n
count = m
until count % n == 0
count += m
end
count
end

Puzzled over palindromic product problem

I've been learning Ruby, so I thought I'd try my hand at some of the project Euler puzzles. Embarrassingly, I only made it to problem 4...
Problem 4 goes as follows:
A palindromic number reads the same
both ways. The largest palindrome made
from the product of two 2-digit
numbers is 9009 = 91 × 99.
Find the largest palindrome made from
the product of two 3-digit numbers.
So I figured I would loop down from 999 to 100 in a nested for loop and do a test for the palindrome and then break out of the loops when I found the first one (which should be the largest one):
final=nil
range = 100...1000
for a in range.to_a.reverse do
for b in range.to_a.reverse do
c=a*b
final=c if c.to_s == c.to_s.reverse
break if !final.nil?
end
break if !final.nil?
end
puts final
This does output a palindrome 580085, but apparently this isn't the highest product of two three-digit numbers within the range. Strangely, the same code succeeds to return 9009, like in the example, if I change the range to 10...100.
Can someone tell me where I am going
wrong?
Also, is there a nicer way to
break out of the internal loop?
Thanks
You are testing 999* (999...100), then 998 * (999...100)
Hence you will be testing 999 * 500 before you test 997 * 996.
So, how you we find that right number?
First note the multiplication is reflective, a * b == b * a, so b need not go from 999...0 every time, just a ...0.
When you find a palindrone, add the two factors together and save the sum (save the two factors also)
Inside the loop, if (a+b) is ever less than the saved sum, abandon the inner loop and move to the next a. When a falls below sum/2, no future value you could find would be higher than the one you've already found, so you're done.
The problem is that you might find a palindrome for an a of 999 and a b of 200, but you break too soon, so you never see that there is one for 998*997 (just example numbers).
You need to either look for all palindromes or once you find the first one, set that b as your minimum bound and continue looking through the a loop.
Regarding the second question, my advice is to approach the problem in more functional, than procedural manner. So, rather than looping, you may try to "describe" your problem functionally, and let Ruby does the work:
From all the pairs of 3-digit numbers,
select only those whose product is a palindrome,
and find the one with the largest product
Although this approach may not yield the most efficient of the solutions, it may teach you couple of Ruby idioms.
Consider the digits of P – let them be x, y and z. P must be at least 6 digits long since the palindrome 111111 = 143×777 – the product of two 3-digit integers. Since P is palindromic:
P=100000x + 10000y + 1000z + 100z + 10y + x
P=100001x + 10010y + 1100z
P=11(9091x + 910y + 100z)
Since 11 is prime, at least one of the integers a or b must have a factor of 11. So if a is not divisible by 11 then we know b must be. Using this information we can determine what values of b we check depending on a.
C# Implementation :
using System;
namespace HighestPalindrome
{
class Program
{
static void Main(string[] args)
{
int i, j;
int m = 1;
bool flag = false;
while (true)
{
if (flag) j = m + 1;
else j = m;
for (i = m; i > 0; i--)
{
Console.WriteLine("{0} * {1} = {2}", 1000 - i, 1000 - j, (1000 - i) * (1000 - j));
j++;
//--- Palindrome Check ------------------------------
int number, temp, remainder, sum = 0;
number = temp = (1000 - i) * (1000 - j);
while (number > 0)
{
remainder = number % 10;
number /= 10;
sum = sum * 10 + remainder;
}
if (sum == temp)
{
Console.WriteLine("Highest Palindrome Number is - {0} * {1} = {2}", 1000 - i, 1000 - j, temp);
Console.ReadKey();
return;
}
//---------------------------------------------------
}
if (flag)
m++;
flag = !flag;
}
}
}
}
The mistake is you assume that if you find palindrom with greatest a value it will give the greatest product it isn't true. Solution is to keep max_product value and update it against solution you find.
I can answer your first question: You need to find the highest product, not the product containing the highest factor. In other words a * b could be greater than c * d even if c > a > b.
You're breaking on the first palindrome you come to, not necessarily the biggest.
Say you have A,B,C,D,E. You test E * A before you test D * C.
The main thing is to go through all the possible values. Don't try to break when you find the first answer just start with a best answer of zero then try all combinations and keep updating best. The secondary thing is to try to reduce the set of "all combinations".
One thing you can do is limit your inner loop to values less than or equal to a (since ab == ba). This puts the larger value of your equation always in a and substantially reduces the number of values you have to test.
for a in range.to_a.reverse do
for b in (100..a).to_a.reverse do
The next thing you can do is break out of the inner loop whenever the product is less than the current best value.
c = a*b
next if c < best
Next, if you're going to go through them all anyway there's no benefit to going through them in reverse. By starting at the top of the range it takes a while before you find a palindromic number and as a result it takes a while to reduce your search set. If you start at the bottom you begin to increase the lower bound quickly.
for a in range.to_a do
for b in (100..a).to_a do
My tests show that either way you try some 405K pairs however. So how about thinking of the problem a different way. What is the largest possible product of two 3 digit numbers? 999 * 999 = 998001 and the smallest is 100*100 = 10000. How about we take the idea you had of breaking on the first answer but apply it to a different range, that being 998001 to 10000 (or 999*999 to 100*100).
for c in (10000...998001).to_a.reverse do
We get to a palindrome after only 202 tests... the problem is it isn't a product of two 3-digit numbers. So now we have to check whether the palindrome we've found is a product of 2 3-digit numbers. As soon as we find a value in the range that is a palindrome and a product of two 3-digit numbers we're done. My tests show we find the highest palindrome that meets the requirement after less than 93K tests. But since we have the overhead of checking that all palindromes to that point were products of two 3-digit numbers it may not be more efficient than the previous solution.
So lets go back to the original improvement.
for a in range.to_a.reverse do
for b in (100..a).to_a.reverse do
We're looping rows then columns and trying to be efficient by detecting a point where we can go to the next row because any additional trys on the current row could not possibly be better than our current best. What if, instead of going down the rows, we go across the diagonals?
Since the products get smaller diagonal by diagonal you can stop as soon as you find a palindome number. This is a really efficient solution but with a more complex implementation. It turns out this method finds the highest palindrome after slightly more than 2200 trys.
ar=[]
limit = 100..999
for a in limit.to_a.reverse do
for b in (100..a).to_a.reverse do
c=a*b
if c.to_s == c.to_s.reverse
palndrm=c
ar << palndrm
end
end
end
print ar
print"\n"
puts ar.max
puts ar.min
an implementation:
max = 100.upto(999).inject([-1,0,0]) do |m, a|
a.upto(999) do |b|
prod = a * b
m = [prod, a, b] if prod.to_s == prod.to_s.reverse and prod > m[0]
end
m
end
puts "%d = %d * %d" % max
prints 906609 = 913 * 993
Here's what I came up with in Ruby:
def largest_palindrome_product(digits)
largest, upper, lower = 0, 10**digits - 1, 10**(digits - 1)
for i in upper.downto(lower) do
for j in i.downto(lower) do
product = i * j
largest = product if product > largest && palindrome?(product)
end
end
largest
end
And here's the function to check if the number is a palindrome:
def palindrome?(input)
chars = input.to_s.chars
for i in 0..(chars.size - 1) do
return false if chars[i] != chars[chars.size - i - 1]
end
true
end
I guess there's probably a more efficient solution out there, though.
For this problem, as we are looking for the highest palindrom, i assumed it would start with a 9. Thus ending with a 9 (palindrom).
if you pay attention, to get a number finishing by 9, you can only get it with numbers finishing by 9 and 1, 3 and 3, 7 and 7.
Then it is useless to check the other values (for instance 999*998 as it will not end with a 9).
Starting from 999 and 991, you can then substract 10 to 991, trying 999 and 981 etc...
You do the same with 993 and 993 ... 993 * 983
same with 997 * 997 then 997 * 987 etc
You don't need to go further than 900 or 10^4 - 10^3 as you can be sure the highest will be before.
int PB4_firstTry(int size)
{
int nb1 = (int)pow(10.0,size+1.0) - 1, nb2 = (int)pow(10.0,size+1.0) - 1;
int pal91 = getFirstPalindrome(size,9,1);
int pal33 = getFirstPalindrome(size,3,3);
int pal77 = getFirstPalindrome(size,7,7);
int bigger1 = (pal91 > pal33) ? pal91 : pal33;
return (bigger1 > pal77) ? bigger1 : pal77;
}
int getFirstPalindrome(int size,int ending1,int ending2)
{
int st1 = (int)pow(10.0,size+1.0) - 10 + ending1;
int comp = st1 - pow(10.0,size);
int st2 = (int)pow(10.0,size+1.0) - 10 + ending2;
int answer = -1;
while (st1 > comp)
{
for (int i = st2; i > comp && st1*i > answer; i-=10)
{
if (PB4_isPalindrome(st1*i))
answer = st1*i;
}
st1 -= 10;
}
return answer;
}
bool PB4_isPalindrome(int number)
{
std::string str = intToString(number);
for (int i = 0; i < (int)(str.length() / 2); i++)
{
if (str[i] != str[str.length() - 1 - i])
return false;
}
return true;
}
std::string intToString(int number)
{
std::ostringstream convert;
convert << number;
return convert.str();
}
Of course, this works for 4 size digits factors etc.

Algorithm for series

A, B, C,…. Z, AA, AB, ….AZ, BA,BB,…. , ZZ,AAA, …., write a function that takes a integer n and returns the string presentation. Can somebody tell me the algorithm to find the nth value in the series?
Treat those strings as numbers in base 26 with A=0. It's not quite an exact translation because in real base 26 A=AA=AAA=0, so you have to make some adjustments as necessary.
Here's a Java implementation:
static String convert(int n) {
int digits = 1;
for (int j = 26; j <= n; j *= 26) {
digits++;
n -= j;
}
String s = "";
for (; digits --> 0 ;) {
s = (char) ('A' + (n % 26)) + s;
n /= 26;
}
return s;
}
This converts 0=A, 26=AA, 702=AAA as required.
Without giving away too much (since this question seems to be a homework problem), what you're doing is close to the same as translating that integer n into base 26. Good luck!
If, as others suspect, this is homework, then this answer probably won't be much help. If this is for a real-world project though, it might make sense to do make a generator instead, which is an easy and idiomatic thing to do in some languages, such as Python. Something like this:
def letterPattern():
pattern = [0]
while True:
yield pattern
pattern[0] += 1
# iterate through all numbers in the list *except* the last one
for i in range(0,len(pattern)-1):
if pattern[i] == 26:
pattern[i] = 0
pattern[i+1] += 1
# now if the last number is 26, set it to zero, and append another zero to the end
if pattern[-1] == 26:
pattern[-1] = 0
pattern.append(0)
Except instead of yielding pattern itself you would reverse it, and map 0 to A, 1 to B, etc. then yield the string. I've run the code above and it seems to work, but I haven't tested it extensively at all.
I hope you'll find this readable enough to implement, even if you don't know Python. (For the Pythonistas out there, yes the "for i in range(...)" loop is ugly and unpythonic, but off the top of my head, I don't know any other way to do what I'm doing here)

Can I reduce the computational complexity of this?

Well, I have this bit of code that is slowing down the program hugely because it is linear complexity but called a lot of times making the program quadratic complexity. If possible I would like to reduce its computational complexity but otherwise I'll just optimize it where I can. So far I have reduced down to:
def table(n):
a = 1
while 2*a <= n:
if (-a*a)%n == 1: return a
a += 1
Anyone see anything I've missed? Thanks!
EDIT: I forgot to mention: n is always a prime number.
EDIT 2: Here is my new improved program (thank's for all the contributions!):
def table(n):
if n == 2: return 1
if n%4 != 1: return
a1 = n-1
for a in range(1, n//2+1):
if (a*a)%n == a1: return a
EDIT 3: And testing it out in its real context it is much faster! Well this question appears solved but there are many useful answers. I should also say that as well as those above optimizations, I have memoized the function using Python dictionaries...
Ignoring the algorithm for a moment (yes, I know, bad idea), the running time of this can be decreased hugely just by switching from while to for.
for a in range(1, n / 2 + 1)
(Hope this doesn't have an off-by-one error. I'm prone to make these.)
Another thing that I would try is to look if the step width can be incremented.
Take a look at http://modular.fas.harvard.edu/ent/ent_py .
The function sqrtmod does the job if you set a = -1 and p = n.
You missed a small point because the running time of your improved algorithm is still in the order of the square root of n. As long you have only small primes n (let's say less than 2^64), that's ok, and you should probably prefer your implementation to a more complex one.
If the prime n becomes bigger, you might have to switch to an algorithm using a little bit of number theory. To my knowledge, your problem can be solved only with a probabilistic algorithm in time log(n)^3. If I remember correctly, assuming the Riemann hypothesis holds (which most people do), one can show that the running time of the following algorithm (in ruby - sorry, I don't know python) is log(log(n))*log(n)^3:
class Integer
# calculate b to the power of e modulo self
def power(b, e)
raise 'power only defined for integer base' unless b.is_a? Integer
raise 'power only defined for integer exponent' unless e.is_a? Integer
raise 'power is implemented only for positive exponent' if e < 0
return 1 if e.zero?
x = power(b, e>>1)
x *= x
(e & 1).zero? ? x % self : (x*b) % self
end
# Fermat test (probabilistic prime number test)
def prime?(b = 2)
raise "base must be at least 2 in prime?" if b < 2
raise "base must be an integer in prime?" unless b.is_a? Integer
power(b, self >> 1) == 1
end
# find square root of -1 modulo prime
def sqrt_of_minus_one
return 1 if self == 2
return false if (self & 3) != 1
raise 'sqrt_of_minus_one works only for primes' unless prime?
# now just try all numbers (each succeeds with probability 1/2)
2.upto(self) do |b|
e = self >> 1
e >>= 1 while (e & 1).zero?
x = power(b, e)
next if [1, self-1].include? x
loop do
y = (x*x) % self
return x if y == self-1
raise 'sqrt_of_minus_one works only for primes' if y == 1
x = y
end
end
end
end
# find a prime
p = loop do
x = rand(1<<512)
next if (x & 3) != 1
break x if x.prime?
end
puts "%x" % p
puts "%x" % p.sqrt_of_minus_one
The slow part is now finding the prime (which takes approx. log(n)^4 integer operation); finding the square root of -1 takes for 512-bit primes still less than a second.
Consider pre-computing the results and storing them in a file. Nowadays many platforms have a huge disk capacity. Then, obtaining the result will be an O(1) operation.
(Building on Adam's answer.)
Look at the Wikipedia page on quadratic reciprocity:
x^2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).
Then you can avoid the search of a root precisely for those odd prime n's that are not congruent with 1 modulo 4:
def table(n):
if n == 2: return 1
if n%4 != 1: return None # or raise exception
...
Based off OP's second edit:
def table(n):
if n == 2: return 1
if n%4 != 1: return
mod = 0
a1 = n - 1
for a in xrange(1, a1, 2):
mod += a
while mod >= n: mod -= n
if mod == a1: return a//2 + 1
It looks like you're trying to find the square root of -1 modulo n. Unfortunately, this is not an easy problem, depending on what values of n are input into your function. Depending on n, there might not even be a solution. See Wikipedia for more information on this problem.
Edit 2: Surprisingly, strength-reducing the squaring reduces the time a lot, at least on my Python2.5 installation. (I'm surprised because I thought interpreter overhead was taking most of the time, and this doesn't reduce the count of operations in the inner loop.) Reduces the time from 0.572s to 0.146s for table(1234577).
def table(n):
n1 = n - 1
square = 0
for delta in xrange(1, n, 2):
square += delta
if n <= square: square -= n
if square == n1: return delta // 2 + 1
strager posted the same idea but I think less tightly coded. Again, jug's answer is best.
Original answer: Another trivial coding tweak on top of Konrad Rudolph's:
def table(n):
n1 = n - 1
for a in xrange(1, n // 2 + 1):
if (a*a) % n == n1: return a
Speeds it up measurably on my laptop. (About 25% for table(1234577).)
Edit: I didn't notice the python3.0 tag; but the main change was hoisting part of the calculation out of the loop, not the use of xrange. (Academic since there's a better algorithm.)
Is it possible for you to cache the results?
When you calculate a large n you are given the results for the lower n's almost for free.
One thing that you are doing is repeating the calculation -a*a over and over again.
Create a table of the values once and then do look up in the main loop.
Also although this probably doesn't apply to you because your function name is table but if you call a function that takes time to calculate you should cache the result in a table and just do a table look up if you call it again with the same value. This save you the time of calculating all of the values when you first run but you don't waste time repeating the calculation more than once.
I went through and fixed the Harvard version to make it work with python 3.
http://modular.fas.harvard.edu/ent/ent_py
I made some slight changes to make the results exactly the same as the OP's function. There are two possible answers and I forced it to return the smaller answer.
import timeit
def table(n):
if n == 2: return 1
if n%4 != 1: return
a1=n-1
def inversemod(a, p):
x, y = xgcd(a, p)
return x%p
def xgcd(a, b):
x_sign = 1
if a < 0: a = -a; x_sign = -1
x = 1; y = 0; r = 0; s = 1
while b != 0:
(c, q) = (a%b, a//b)
(a, b, r, s, x, y) = (b, c, x-q*r, y-q*s, r, s)
return (x*x_sign, y)
def mul(x, y):
return ((x[0]*y[0]+a1*y[1]*x[1])%n,(x[0]*y[1]+x[1]*y[0])%n)
def pow(x, nn):
ans = (1,0)
xpow = x
while nn != 0:
if nn%2 != 0:
ans = mul(ans, xpow)
xpow = mul(xpow, xpow)
nn >>= 1
return ans
for z in range(2,n) :
u, v = pow((1,z), a1//2)
if v != 0:
vinv = inversemod(v, n)
if (vinv*vinv)%n == a1:
vinv %= n
if vinv <= n//2:
return vinv
else:
return n-vinv
tt=0
pri = [ 5,13,17,29,37,41,53,61,73,89,97,1234577,5915587277,3267000013,3628273133,2860486313,5463458053,3367900313 ]
for x in pri:
t=timeit.Timer('q=table('+str(x)+')','from __main__ import table')
tt +=t.timeit(number=100)
print("table(",x,")=",table(x))
print('total time=',tt/100)
This version takes about 3ms to run through the test cases above.
For comparison using the prime number 1234577
OP Edit2 745ms
The accepted answer 522ms
The above function 0.2ms

Resources