Related
here is a problem that will turn your brain inside out, I'm trying to deal with it for a quite some time already.
Suppose you have sphere located in the origin of a 3d space. The sphere is segmented into a grid of equidistant points. The procedure that forms grid isn't that important but what seems simple to me is to use regular 3d computer graphics sphere generation procedure (The algorithm that forms the sphere described in the picture below)
Now, after I have such sphere (i.e. icosahedron of some degree) I need a computationally trivial procedure that will be capable to snap (an angle) of a random unit vector to it's closest icosahedron edge points. Also it is acceptable if the vector will be snapped to a center point of triangle that the vector is intersecting.
I would like to emphasise that it is important that the procedure should be computationally trivial. This means that procedures that actually create a sphere in memory and then involve a search among every triangle in sphere is not a good idea because such search will require access to global heap and ram which is slow because I need to perform this procedure millions of times on a low end mobile hardware.
The procedure should yield it's result through a set of mathematical equations based only on two values, the vector and degree of icosahedron (i.e. sphere)
Any thoughts? Thank you in advance!
============
Edit
One afterthought that just came to my mind, it seems that within diagram below step 3 (i.e. Project each new vertex to the unit sphere) is not important at all, because after bisection, projection of every vertex to a sphere would preserve all angular characteristics of a bisected shape that we are trying to snap to. So the task simplifies to identifying a bisected sub triangle coordinates that are penetrated by vector.
Make a table with 20 entries of top-level icosahedron faces coordinates - for example, build them from wiki coordinate set)
The vertices of an icosahedron centered at the origin with an
edge-length of 2 and a circumscribed sphere radius of 2 sin (2π/5) are
described by circular permutations of:
V[] = (0, ±1, ±ϕ)
where ϕ = (1 + √5)/2
is the golden ratio (also written τ).
and calculate corresponding central vectors C[] (sum of three vectors for vertices of every face).
Find the closest central vector using maximum of dot product (DP) of your vector P and all C[]. Perhaps, it is possible to reduce number of checks accounting for P components (for example if dot product of P and some V[i] is negative, there is no sense to consider faces being neighbors of V[i]). Don't sure that this elimination takes less time than direct full comparison of DP's with centers.
When big triangle face is determined, project P onto the plane of that face and get coordinates of P' in u-v (decompose AP' by AB and AC, where A,B,C are face vertices).
Multiply u,v by 2^N (degree of subdivision).
u' = u * 2^N
v' = v * 2^N
iu = Floor(u')
iv = Floor(v')
fu = Frac(u')
fv = Frac(v')
Integer part of u' is "row" of small triangle, integer part of v' is "column". Fractional parts are trilinear coordinates inside small triangle face, so we can choose the smallest value of fu, fv, 1-fu-fv to get the closest vertice. Calculate this closest vertex and normalize vector if needed.
It's not equidistant, you can see if you study this version:
It's a problem of geodesic dome frequency and some people have spent time researching all known methods to do that geometry: http://geo-dome.co.uk/article.asp?uname=domefreq, see that guy is a self labelled geodesizer :)
One page told me that the progression goes like this: 2 + 10·4N (12,42,162...)
You can simplify it down to a simple flat fractal triangle, where every triangle devides into 4 smaller triangles, and every time the subdivision is rotated 12 times around a sphere.
Logically, it is only one triangle rotated 12 times, and if you solve the code on that side, then you have the lowest computation version of the geodesic spheres.
If you don't want to keep the 12 sides as a series of arrays, and you want a lower memory version, then you can read about midpoint subdivision code, there's a lot of versions of midpoint subdivision.
I may have completely missed something. just that there isn't a true equidistant geodesic dome, because a triangle doesn't map to a sphere, only for icos.
I've just implemented collision detection using SAT and this article as reference to my implementation. The detection is working as expected but I need to know where both rectangles are colliding.
I need to find the center of the intersection, the black point on the image above (but I don't have the intersection area neither). I've found some articles about this but they all involve avoiding the overlap or some kind of velocity, I don't need this.
The information I've about the rectangles are the four points that represents them, the upper right, upper left, lower right and lower left coordinates. I'm trying to find an algorithm that can give me the intersection of these points.
I just need to put a image on top of it. Like two cars crashed so I put an image on top of the collision center. Any ideas?
There is another way of doing this: finding the center of mass of the collision area by sampling points.
Create the following function:
bool IsPointInsideRectangle(Rectangle r, Point p);
Define a search rectangle as:
TopLeft = (MIN(x), MAX(y))
TopRight = (MAX(x), MAX(y))
LowerLeft = (MIN(x), MIN(y))
LowerRight = (MAX(x), MIN(y))
Where x and y are the coordinates of both rectangles.
You will now define a step for dividing the search area like a mesh. I suggest you use AVG(W,H)/2 where W and H are the width and height of the search area.
Then, you iterate on the mesh points finding for each one if it is inside the collition area:
IsPointInsideRectangle(rectangle1, point) AND IsPointInsideRectangle(rectangle2, point)
Define:
Xi : the ith partition of the mesh in X axis.
CXi: the count of mesh points that are inside the collision area for Xi.
Then:
And you can do the same thing with Y off course. Here is an ilustrative example of this approach:
You need to do the intersection of the boundaries of the boxes using the line to line intersection equation/algorithm.
http://en.wikipedia.org/wiki/Line-line_intersection
Once you have the points that cross you might be ok with the average of those points or the center given a particular direction possibly. The middle is a little vague in the question.
Edit: also in addition to this you need to work out if any of the corners of either of the two rectangles are inside the other (this should be easy enough to work out, even from the intersections). This should be added in with the intersections when calculating the "average" center point.
This one's tricky because irregular polygons have no defined center. Since your polygons are (in the case of rectangles) guaranteed to be convex, you can probably find the corners of the polygon that comprises the collision (which can include corners of the original shapes or intersections of the edges) and average them to get ... something. It will probably be vaguely close to where you would expect the "center" to be, and for regular polygons it would probably match exactly, but whether it would mean anything mathematically is a bit of a different story.
I've been fiddling mathematically and come up with the following, which solves the smoothness problem when points appear and disappear (as can happen when the movement of a hitbox causes a rectangle to become a triangle or vice versa). Without this bit of extra, adding and removing corners will cause the centroid to jump.
Here, take this fooplot.
The plot illustrates 2 rectangles, R and B (for Red and Blue). The intersection sweeps out an area G (for Green). The Unweighted and Weighted Centers (both Purple) are calculated via the following methods:
(0.225, -0.45): Average of corners of G
(0.2077, -0.473): Average of weighted corners of G
A weighted corner of a polygon is defined as the coordinates of the corner, weighted by the sin of the angle of the corner.
This polygon has two 90 degree angles, one 59.03 degree angle, and one 120.96 degree angle. (Both of the non-right angles have the same sine, sin(Ɵ) = 0.8574929...
The coordinates of the weighted center are thus:
( (sin(Ɵ) * (0.3 + 0.6) + 1 - 1) / (2 + 2 * sin(Ɵ)), // x
(sin(Ɵ) * (1.3 - 1.6) + 0 - 1.5) / (2 + 2 * sin(Ɵ)) ) // y
= (0.2077, -0.473)
With the provided example, the difference isn't very noticeable, but if the 4gon were much closer to a 3gon, there would be a significant deviation.
If you don't need to know the actual coordinates of the region, you could make two CALayers whose frames are the rectangles, and use one to mask the other. Then, if you set an image in the one being masked, it will only show up in the area where they overlap.
I am working on a project using an Arduino that needs to calculate the area of a polygon made up of many points. I use surveyor's theorem,
But the points are in random order, not (counter)clockwise. Some make lines that cross, and they make polygons like a bow-tie or hourglass, which don't work for the surveyor's theorem, so I need to sort them in (counter)clockwise order. what is the easiest way to do this?
You don't need to find the convex hull. Just use the area formula from a bunch of points ordered counterclockwise:
http://en.wikipedia.org/wiki/Polygon#Area_and_centroid
float totalArea = 0.0;
for(i=0; i<N; i++) {
float parallelogramArea = (point[i].x*point[i+1].y - point[i+1].x*point[i].y)
float triangleArea = parallelogramArea / 2.0;
totalArea += triangleArea;
}
// or divide by 2 out here for efficiency
The area formula comes from taking each edge AB, and calculating the (signed) area between the edge and the origin (triangle ABO) by taking the cross-product (which gives you the area of a parallelogram) and cutting it in half (factor of 1/2). As one wraps around the polygon, these positive and negative triangles will overlap, and the area between the origin and the polygon will be cancelled out and sum to 0, while only the area inside remains. This is why the formula is called the Surveyor's Formula, since the "surveyor" is at the origin; if going counterclockwise, positive area is added when going left->right and negative area is added when going right->left, from the perspective of the origin.
The mathematical formula is given below, but does not provide the intuition behind it (as given above):
edit (after question has been changed)
There is absolutely no way to "get their order" without additional assumptions, e.g. "the polygon is convex".
If the polygon is concave, it becomes nearly impossible in the general case without lots of extra assumptions (proof: consider a point which lies within the convex hull, but whose neighbors do not; there are many possible valid polygons you can construct using that point, its neighbors, and their neighbors).
If the polygon is convex, all you need to do is sort by the angle from some arbitrary point inside the polygon (e.g. centroid of three arbitrary points).
You could find the center of gravity (cx,cy) of the points and then calculate the angles of the points relative to (cx,cy).
angle[i] = atan2(y[i]-cy, x[i]-cx) ;
Then sort the points by angle.
Just beware that a random set of points does not describe a single unique polygon. So this method will just give you one of the possible polygons, and not necessarily the polygon you would have obtained if you had manually connected the dots.
I have an array of latitude/longitude coordinate pairs that represent a polygon. I'm trying to determine the total area within that polygon. How would I go about doing that in Ruby?
Here's an example array of the polygon:
[[37.7663613767094, -122.452969210084], [37.7674219449606, -122.444718340349], [37.7701838510542, -122.445330289514], [37.7709974013834, -122.439159589248], [37.7700761930893, -122.438861402472], [37.7703501163684, -122.436868738421], [37.7712650571321, -122.437078116573], [37.7736056746515, -122.437533130227], [37.7714671036087, -122.453964210266], [37.7663613767094, -122.452969210084]]
It probably doesn't matter that much on the language. You can make use of the formula mentioned in here for calculating the area of a polygon:
http://mathworld.wolfram.com/PolygonArea.html
Assuming your points are (x1, y1) (x2, y2) .. (xn, yn) and they enclose a small area:
Area = 0.5 * (x1 * y2 - x2 * y1 + x2 * y3 - x3 * y2 ..... + xn * y1 - x1 * yn)
Note: This won't work for larger areas, for which you need to use more complex method to calculate the area, which involves angular co-ordinates. But, this does the job for small areas, which can be assumed to be planar.
Edit:
To get area in sq miles, you can do the following, from there, convert to whatever units you want.
areaInSqMiles = Area * (60 * 60 * 1.15 * 1.15)
language independent solution:
GIVEN: a polygon can ALWAYS be composed by n-2 triangles that do not overlap (n = number of points OR sides). 1 triangle = 3 sided polygon = 1 triangle; 1 square = 4 sided polygon = 2 triangles; etc ad nauseam QED
therefore, a polygon can be reduced by "chopping off" triangles and the total area will be the sum of the areas of these triangles. try it with a piece of paper and scissors, it is best if you can visualize the process before following.
if you take any 3 consecutive points in a polygons path and create a triangle with these points, you will have one and only one of three possible scenarios:
resulting triangle is completely inside original polygon
resulting triangle is totally outside original polygon
resulting triangle is partially contained in original polygon
we are interested only in cases that fall in the first option (totally contained).
every time we find one of these, we chop it off, calculate its area (easy peasy, wont explain formula here) and make a new polygon with one less side (equivalent to polygon with this triangle chopped off). until we have only one triangle left.
how to implement this programatically:
create an array of points. run the array making triangles from points x, x+1 and x+2. transform each triangle from a shape to an area and intersect it with area created from polygon. IF the resulting intersection is identical to the original triangle, then said triangle is totally contained in polygon and can be chopped off. remove x+1 from the array and start again from x=0. otherwise, move to next point x+1 in array.
additionally if you are looking to integrate with mappping and are starting from geopoints, you must convert from geopoints to screenpoints. this requires deciding a modelling and formula for earths shape (though we tend to think of the earth as a sphere, it is actually an irregular ovoid (eggshape), with dents. there are many models out there, for further info wiki.
You can use this library which wraps GEOS (a C geospatial library itself a port of the JTS).
https://github.com/dark-panda/ffi-geos
This library can handle the calculations in coordinate space and takes care of the approximations.
Depending on how much accuracy you need I would project the data first to an appropriate projection (not Mercator). Then calculate your area
There is an awesome example on how to multiply verticies. Essentially exactly what you would like to do!!
http://www.wikihow.com/Calculate-the-Area-of-a-Polygon
Some techniques for this include integration (divide the polygon into latitudinal strips and integrate. You can also project onto a flat surface and calculate that area.
I have a list of two-dimensional points and I want to obtain which of them fall within a semi-circle.
Originally, the target shape was a rectangle aligned with the x and y axis. So the current algorithm sorts the pairs by their X coord and binary searches to the first one that could fall within the rectangle. Then it iterates over each point sequentially. It stops when it hits one that is beyond both the X and Y upper-bound of the target rectangle.
This does not work for a semi-circle as you cannot determine an effective upper/lower x and y bounds for it. The semi-circle can have any orientation.
Worst case, I will find the least value of a dimension (say x) in the semi-circle, binary search to the first point which is beyond it and then sequentially test the points until I get beyond the upper bound of that dimension. Basically testing an entire band's worth of points on the grid. The problem being this will end up checking many points which are not within the bounds.
Checking whether a point is inside or outside a semi-circle (or a rectangle for that matter) is a constant-time operation.
Checking N points lie inside or outside a semi-circle or rectangle is O(N).
Sorting your N points is O(N*lg(N)).
It is asymptotically faster to test all points sequentially than it is to sort and then do a fast culling of the points based on a binary search.
This may be one of those times where what seems fast and what is fast are two different things.
EDIT
There's also a dead-simple way to test containment of a point in the semi-circle without mucking about with rotations, transformations, and the like.
Represent the semi-circle as two components:
a line segment from point a to b representing the diameter of the semi-circle
an orientation of either left-of or right-of indicating that the semi-circle is either to the left or right of line segment ab when traveling from a to b
You can exploit the right-hand rule to determine if the point is inside the semicircle.
Then some pseudo-code to test if point p is in the semi-circle like:
procedure bool is_inside:
radius = distance(a,b)/2
center_pt = (a+b)/2
vec1 = b - center_pt
vec2 = p - center_pt
prod = cross_product(vec1,vec2)
if orientation == 'left-of'
return prod.z >= 0 && distance(center_pt,p) <= radius
else
return prod.z <= 0 && distance(center_pt,p) <= radius
This method has the added benefit of not using any trig functions and you can eliminate all square-roots by comparing to the squared distance. You can also speed it up by caching the 'vec1' computation, the radius computation, center_pt computation, and reorder a couple of the operations to bail early. But I was trying to go for clarity.
The 'cross_product' returns an (x,y,z) value. It checks if the z-component is positive or negative. This can also be sped up by not using a true cross product and only calculating the z-component.
First, translate & rotate the semi-circle so that one end is on the negative X-axis, and the other end is on the positive X-axis, centered on the origin (of course, you won't actually translate & rotate it, you'll just get the appropriate numbers that would translate & rotate it, and use them in the next step).
Then, you can treat it like a circle, ignoring all negative y-values, and just test using the square root of the sum of the squares of X & Y, and see if it's less than or equal to the radius.
"Maybe they can brute force it since they have a full GPU dedicated to them."
If you have a GPU at your disposal, then there are more ways to do it. For example, using a stencil buffer:
clear the stencil buffer and set the stencil operation to increment
render your semicircle to the stencil buffer
render your points
read back the pixels and check the values at your points
the points that are inside the semicircle would have been incremented twice.
This article describes how stencil buffers can be used in OpenGL.
If there's a standard algorithm for doing this, I'm sure someone else will come up with it, but if not: you could try sorting the points by distance from the center of the circle and iterating over only those whose distance is less than the semicircle's radius. Or if computing distance is expensive, I'd just try finding the bounding box of the semicircle (or even the bounding square of the circle of which the semicircle is part) and iterating over the points in that range. To some extent it depends on the distribution of the points, i.e. do you expect most of them or only a small fraction of them to fall within the semicircle?
You can find points in a circle and points on one side of a given slope, right?
Just combine the two.
Here's part of a function I wrote do get a cone firing arc for a weapon in a tile based game.
float lineLength;
float lineAngle;
for(int i = centerX - maxRange; i < centerX + maxRange + 1; i++){
if(i < 0){
continue;
}
for(int j = centerY - maxRange; j < centerY + maxRange + 1; j++){
if(j < 0){
continue;
}
lineLength = sqrt( (float)((centerX - i)*(centerX - i)) + (float)((centerY - j)*(centerY - j)));
lineAngle = lineAngles(centerX, centerY, forwardX, forwardY, centerX, centerY, i, j);
if(lineLength < (float)maxRange){
if(lineAngle < arcAngle){
if( (float)minRange <= lineLength){
AddToHighlightedTiles(i,j);
}
}
}
}
}
The variables should be self explanatory and the line angles function takes 2 lines and finds the angle between them. The forwardX and forwardY is just one tile in the correct direction from the center X and Y based on what angle you're pointing in. Those can be gotten easily with a switch statement.
float lineAngles(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4){
int a = x2 - x1;
int b = y2 - y1;
int c = x4 - x3;
int d = y4 - y3;
float ohSnap = ( (a * c) + (b * d) )/(sqrt((float)a*a + b*b) * sqrt((float)c*c + d*d) );
return acos(ohSnap) * 180 / 3.1415926545f;
}
It would appear that a simple scheme will work here.
Reduce the number of points in the set, by first computing the convex hull. Only the points on the convex hull will contribute to any interaction with any convex bounding shape. So retain only the subset of points on the perimeter of the hull.
It can easily be argued that the minimal radius bounding semi-circle must have one edge (two points) of the convex hull coincident along the diameter of the semi-circle. I.e., if some edge of the hull does not lie in the diameter, then there exists a different semi-circle with smaller diameter that contains the same set of points.
Test each edge in sequence. (A convex hull often has relatively few edges, so this will go quickly.) Now it becomes a simple 1-d minimization problem. If we choose to assume the edge in question lies on the diameter, then we merely need to find the center of the sphere. It must lie along the current line which we are considering to be the diameter. So as a function of the position of the point along the current diameter, just find the point which lies farthest away from the nominal center. By minimizing that distance, we find the radius of the minimal semi-circle along that line as a diameter.
Now, just choose the best of the possible semi-circles found over all edges of the convex hull.
If your points have integer co-ordinates, the fastest solution may be a lookup table. Since a semicircle is convex, for each y co-ordinate, you get a fixed range of x, so each entry in your lookup table gives maximum and minimum X co-ordinates.
Of course you still need to precalculate the table, and if your semicircle isn't fixed, you may be doing that a lot. That said, this is basically one part of what would once have been done to render a semicircle - the full shape would be rendered as a series of horizontal spans by repeatedly calling a horizontal line drawing function.
To calculate the spans in the first place (if you need to do it repeatedly), you'd probably want to look for an old copy of Michael Abrash's Zen of Graphics Programming. That described Bresenhams well-known line algorithm, and the not-so-well-known Hardenburghs circle algorithm. It shouldn't be too hard to combine the span-oriented versions of the two to quickly calculate the spans for a semi-circle.
IIRC, Hardenburgh uses the x^2 + y^2 = radius^2, but exploits the fact that you're stepping through spans to avoid calculating square roots - I think it uses the fact that (x+1)^2 = x^2 + 2x + 1 and (y-1)^2 = y^2 - 2y + 1, maintaining running values for x, y, x^2 and (radius^2 - y^2), so each step only requires a comparison (is the current x^2 + y^2 too big) and a few additions. It's done for one octant only (the only way to ensure single-pixel steps), and extended to the full circle through symmetry.
Once you have the spans for the full circle, it should be easy to use Bresenhams to cut off the half you don't want.
Of course you'd only do all this if you're absolutely certain that you need to (and that you can work with integers). Otherwise stick with stbuton.
translate the center of the arc to the origin
compute angle between ordinate axis and end points of radii of semi-cirlce
translate the point in question by same dx,dy
compute distance from origin to translated x,y of point, if d > radius of circle/arc eliminate
compute angle between ordinate axis and end point
if angle is not between starting and ending arc of semi-cirlce, eliminate
points remaning should be inside semi-circle
I guess someone found the same solution as me here but I have no code to show as its pretty far in my memory...
I'd do it by steps...
1. I'd look if i'm within a circle... if yes look on which side of the circle.
2. By drawing a normal vector that come from the vector made by the semi-sphere. I could know if I'm behind or in front of the vector...and if you know which side is the semi sphere and which side is the void...It will be pretty damn easy to find if you're within the semi sphere. You have to do the dot product.
I'm not sure if it's clear enough but the test shouldn't be that hard to do...In the end you have to look for a negative or positive value...if it's 0 you're on the vector of the semisphere so it's up to you to say if it's outside or inside the semi-sphere.
The fastest way to do this will depend on your typical data. If you have real-world data to look at, do that first. When points are outside the semi-circle, is it usually because they are outside the circle? Are your semi-circles typically thin pie slices?
There are several ways to do this with vectors. You can scale the circle to a unit circle and use cross-products and look at the resultant vectors. You can use dot-products and see how the prospective point lands on the other vectors.
If you want something really easy to understand, first check to make sure it's inside the circle, then get the angle and make sure it's between the angle of the two vectors that dictate the semi-circle.
Edit: I had forgotten that a semicircle is always half a circle. I was thinking of any arbitrary section of a circle.
Now that I have remembered what a semicircle is, here's how I would do that. It's similar to stbuton's solution, but it represents the semicircle differently.
I'd represent the semicircle as the unit vector that bisects the semicircle. You can easily get that from either one of the vectors that indicate the boundary of the semicircle (because they are 90 degrees away from the representation) by swapping x and y and negating one of them.
Now you just cross the vector created by subtracting the point to be tested from the circle's center. The sign of z tells you whether the point is in the semicircle, and the length of z can be compared against the radius.
I did all the physics for Cool Pool (from Sierra Online). It's all done in vectors and it's filled with dots and crosses. Vectors solutions are fast. Cool Pool was able to run on a P60, and did reasonable breaks and even spin.
Note: For solutions where you're checking sqrt(xx+yy), don't even do the sqrt. Instead, keep the square of the radius around and compare against that.