There are several CompletionFutures methods that I'd like to chain. The problem is that I want to skip other chain and go to last method of the pipeline if some condition is met. Mentioned as comment in the below code. For example:
public CompletableFuture<Void> process() {
CompletableFuture<Set<String>> service1 = new CompletableFuture();
return service1
.thenCompose(data -> {
if (!data.isEmpty()) {
SomeObject obj = prepareSomeObject();
obj.addAll(data.stream().collect(Collectors.toSet()));
//Here want to check some condition and if it meets, then go to last method of the pipeline
//Otherwise continue with the current flow
CompletableFuture<String> someFuture = new CompletableFuture<>();
CompletableFuture<String> someOtherFuture= new CompletableFuture<>();
return CompletableFuture.allOf(someFuture, someOtherFuture)
.thenApply(aVoid -> {
String user = someFuture.join();
String unit = someOtherFuture.join();
obj.setUnit(unit);
obj.setUser(user)
return obj;
})
.thenCompose(this::someMethod)
.thenCompose(this::someOtherMethod); // last method in the pipeline
}
return completedFuture(null);
});
}
I have tried something like this, Please critique on the right way to do it.
public CompletableFuture<Void> process() {
CompletableFuture<Set<String>> service1 = new CompletableFuture();
return service1
.thenCompose(data -> {
if (!data.isEmpty()) {
SomeObject obj = prepareSomeObject();
obj.addAll(data.stream().collect(Collectors.toSet()));
if(condition not match) { //condition match
CompletableFuture<String> someFuture = new CompletableFuture<>();
CompletableFuture<String> someOtherFuture= new CompletableFuture<>();
return CompletableFuture.allOf(someFuture, someOtherFuture)
.thenApply(aVoid -> {
String user = someFuture.join();
String unit = someOtherFuture.join();
obj.setUnit(unit);
obj.setUser(user)
})
.thenCompose(this::someMethod)
.thenCompose(this::someOtherMethod); // last method in the pipeline
} else return someOtherMethod(obj);
}
return completedFuture(null);
});
}
Related
I am trying to insert some records in DB in one go, also tried for loop but it never happens, If I save a single record, it works
#RequiredArgsConstructor
#Service
public class UserServiceImpl {
private final UserRepository userRepo;
private final FamilyRepository familyRepo;
public Mono<ServerResponse> insertUserData(ServerRequest serverRequest) {
return serverRequest.bodyToMono(UserAndFamilyRequest.class)
// .map(userAndFamilyRequest -> {
// List<FamilyMember> list = userAndFamilyRequest.getFamilyMemberList();
// list.stream().forEach((familyMember) ->
// {
// System.out.println(familyMember.getName());
// FamilyMemberEntity familyMemberEntity = new FamilyMemberEntity();
// familyMemberEntity.setAge(familyMember.getAge());
// familyMemberEntity.setName(familyMember.getName());
// familyRepo.save(familyMemberEntity);//doesn't work either
// try{
// Thread.sleep(2000);
// }catch(Exception ex){
//
// }
//
// });
// return userAndFamilyRequest;
// })
.map(userAndFamilyRequest -> {
List<FamilyMember> list = userAndFamilyRequest.getFamilyMemberList();
var entityList = list.stream().map(familyMember -> {
FamilyMemberEntity familyMemberEntity = new FamilyMemberEntity();
familyMemberEntity.setName(familyMember.getName());
familyMemberEntity.setAge(familyMember.getAge());
return familyMemberEntity;
}).collect(Collectors.toList());
familyRepo.saveAll(entityList);//doesn't work
return userAndFamilyRequest;
})
.flatMap(userAndFamilyRequest -> {
UserEntity userEntity = new UserEntity();
User user = userAndFamilyRequest.getUser();
userEntity.setSeats(userAndFamilyRequest.getFamilyMemberList().size());
userEntity.setAge(user.getAge());
userEntity.setName(user.getName());
return userRepo.save(userEntity);
})
// .flatMap(userAndFamilyRequest -> {
// FamilyMember familyMember = userAndFamilyRequest.getFamilyMemberList().get(0);
// FamilyMemberEntity familyMemberEntity = new FamilyMemberEntity();
// familyMemberEntity.setAge(familyMember.getAge());
// familyMemberEntity.setName(familyMember.getName());
// return familyRepo.save(familyMemberEntity);//single save works
// })
.flatMap(userEntity -> ServerResponse.created(URI.create("users"+userEntity.getId()))
.contentType(MediaType.APPLICATION_JSON)
.bodyValue(userEntity));
}
}
no error in the console
add try {} catch in function save data, so you can know what error you face it
Well I found the answer by myself, the familyRepo.save inside map will not work by itself because it returns a Flux which will execute only when subscribed, replacing it with flatMap(which automatically subscribes) resolved the issue.
I am new to the topic of unit testing and my question is whether I should perform the test as such of each line of code of a method or in what ways I can perform these tests to have a good coverage, if also, should exceptions be evaluated or not?
If for example I have this service method that also uses some helpers that communicate with other microservices, someone could give me examples of how to perform, thank you very much.
public Mono<BankAccountDto> save(BankAccountDto bankAccount) {
var count = findAccountsByCustomerId(bankAccount.getCustomerId()).count();
var customerDto = webClientCustomer
.findCustomerById(bankAccount.getCustomerId());
var accountType = bankAccount.getAccountType();
return customerDto
.zipWith(count)
.flatMap(tuple -> {
final CustomerDto custDto = tuple.getT1();
final long sizeAccounts = tuple.getT2();
final var customerType = custDto.getCustomerType();
if (webClientCustomer.isCustomerAuthorized(customerType, accountType, sizeAccounts)) {
return saveBankAccountAndRole(bankAccount);
}
return Mono.error(new Exception("....."));
});
}
EDIT
public Mono<BankAccountDto> save(BankAccountDto bankAccount) {
var count = findAccountsByCustomerId(bankAccount.getCustomerId()).count();
var customerDto = webClientCustomer
.findCustomerById(bankAccount.getCustomerId());
return customerDto
.zipWith(count)
.flatMap(tuple -> {
final var customDto = tuple.getT1();
final var sizeAccounts = tuple.getT2();
final var accountType = bankAccount.getAccountType();
// EDITED
return webClientCustomer.isCustomerAuthorized(customDto, accountType, sizeAccounts)
.flatMap(isAuthorized -> {
if (Boolean.TRUE.equals(isAuthorized)) {
return saveBankAccountAndRole(bankAccount);
}
return Mono.error(new Exception("No tiene permisos para registrar una cuenta bancaria"));
});
});
}
Given that you want to unit test this code, you would need to mock dependencies such as webClientCustomer.
Then you should always test whatever are the relevant paths within the code. Looking at your code I only see three relevant ones to be tested:
the method returns an empty Mono if webClientCustomer.findCustomerById(bankAccount.getCustomerId()); returns an empty Mono;
saveBankAccountAndRole(bankAccount) is called and your save() method actually returns whatever saveBankAccountAndRole(bankAccount) returns. This would should happen if webClientCustomer.isCustomerAuthorized(customerType, accountType, sizeAccounts) is true;
the method returns an exception if webClientCustomer.isCustomerAuthorized(customerType, accountType, sizeAccounts) is false.
Usually CollectionModel will return an _embedded array, but in this example:
#GetMapping("/{id}/productMaterials")
public ResponseEntity<?> getProductMaterials(#PathVariable Integer id) {
Optional<Material> optionalMaterial = materialRepository.findById(id);
if (optionalMaterial.isPresent()) {
List<ProductMaterial> productMaterials = optionalMaterial.get().getProductMaterials();
CollectionModel<ProductMaterialModel> productMaterialModels =
new ProductMaterialModelAssembler(ProductMaterialController.class, ProductMaterialModel.class).
toCollectionModel(productMaterials);
return ResponseEntity.ok().body(productMaterialModels);
}
return ResponseEntity.badRequest().body("no such material");
}
if the productMaterials is empty CollectionModel will not render the _embedded array which will break the client. Is there any ways to fix this?
if (optionalMaterial.isPresent()) {
List<ProductMaterial> productMaterials = optionalMaterial.get().getProductMaterials();
CollectionModel<ProductMaterialModel> productMaterialModels =
new ProductMaterialModelAssembler(ProductMaterialController.class, ProductMaterialModel.class).
toCollectionModel(productMaterials);
if(productMaterialModels.isEmpty()) {
EmbeddedWrappers wrappers = new EmbeddedWrappers(false);
EmbeddedWrapper wrapper = wrappers.emptyCollectionOf(ProductMaterialModel.class);
Resources<Object> resources = new Resources<>(Arrays.asList(wrapper));
return ResponseEntity.ok(new Resources<>(resources));
} else {
return ResponseEntity.ok().body(productMaterialModels);
}
}
I have 3 CompletableFutures all 3 returning different data types.
I am looking to create a result object that is a composition of the result returned by all the 3 futures.
So my current working code looks like this:
public ClassD getResultClassD() {
ClassD resultClass = new ClassD();
CompletableFuture<ClassA> classAFuture = CompletableFuture.supplyAsync(() -> service.getClassA() );
CompletableFuture<ClassB> classBFuture = CompletableFuture.supplyAsync(() -> service.getClassB() );
CompletableFuture<ClassC> classCFuture = CompletableFuture.supplyAsync(() -> service.getClassC() );
CompletableFuture.allOf(classAFuture, classBFuture, classCFuture)
.thenAcceptAsync(it -> {
ClassA classA = classAFuture.join();
if (classA != null) {
resultClass.setClassA(classA);
}
ClassB classB = classBFuture.join();
if (classB != null) {
resultClass.setClassB(classB);
}
ClassC classC = classCFuture.join();
if (classC != null) {
resultClass.setClassC(classC);
}
});
return resultClass;
}
My questions are:
My assumption here is that since I am using allOf and thenAcceptAsync this call will be non blocking. Is my understanding right ?
Is this the right way to deal with multiple futures returning different result types ?
Is it right to construct ClassD object within thenAcceptAsync ?
Is it appropriate to use the join or getNow method in the thenAcceptAsync lambda ?
Your attempt is going into the right direction, but not correct. Your method getResultClassD() returns an already instantiated object of type ClassD on which an arbitrary thread will call modifying methods, without the caller of getResultClassD() noticing. This can cause race conditions, if the modifying methods are not thread safe on their own, further, the caller will never know, when the ClassD instance is actually ready for use.
A correct solution would be:
public CompletableFuture<ClassD> getResultClassD() {
CompletableFuture<ClassA> classAFuture
= CompletableFuture.supplyAsync(() -> service.getClassA() );
CompletableFuture<ClassB> classBFuture
= CompletableFuture.supplyAsync(() -> service.getClassB() );
CompletableFuture<ClassC> classCFuture
= CompletableFuture.supplyAsync(() -> service.getClassC() );
return CompletableFuture.allOf(classAFuture, classBFuture, classCFuture)
.thenApplyAsync(dummy -> {
ClassD resultClass = new ClassD();
ClassA classA = classAFuture.join();
if (classA != null) {
resultClass.setClassA(classA);
}
ClassB classB = classBFuture.join();
if (classB != null) {
resultClass.setClassB(classB);
}
ClassC classC = classCFuture.join();
if (classC != null) {
resultClass.setClassC(classC);
}
return resultClass;
});
}
Now, the caller of getResultClassD() can use the returned CompletableFuture to query the progress state or chain dependent actions or use join() to retrieve the result, once the operation is completed.
To address the other questions, yes, this operation is asynchronous and the use of join() within the lambda expressions is appropriate. join was exactly created because Future.get(), which is declared to throw checked exceptions, makes the use within these lambda expressions unnecessarily hard.
Note that the null tests are only useful, if these service.getClassX() can actually return null. If one of the service calls fails with an exception, the entire operation (represented by CompletableFuture<ClassD>) will complete exceptionally.
I was going down a similar route to what #Holger was doing in his answer, but wrapping the Service Calls in an Optional, which leads to cleaner code in the thenApplyAsync stage
CompletableFuture<Optional<ClassA>> classAFuture
= CompletableFuture.supplyAsync(() -> Optional.ofNullable(service.getClassA())));
CompletableFuture<Optional<ClassB>> classBFuture
= CompletableFuture.supplyAsync(() -> Optional.ofNullable(service.getClassB()));
CompletableFuture<Optional<ClassC>> classCFuture
= CompletableFuture.supplyAsync(() -> Optional.ofNullable(service.getClassC()));
return CompletableFuture.allOf(classAFuture, classBFuture, classCFuture)
.thenApplyAsync(dummy -> {
ClassD resultClass = new ClassD();
classAFuture.join().ifPresent(resultClass::setClassA)
classBFuture.join().ifPresent(resultClass::setClassB)
classCFuture.join().ifPresent(resultClass::setClassC)
return resultClass;
});
I ran into something similar before and created a short demo to show how I solved this issue.
Similar concept to #Holger except I used a function to combine each individual future.
https://github.com/te21wals/CompletableFuturesDemo
Essentially:
public class CombindFunctionImpl implement CombindFunction {
public ABCData combind (ClassA a, ClassB b, ClassC c) {
return new ABCData(a, b, c);
}
}
...
public class FutureProvider {
public CompletableFuture<ClassA> retrieveClassA() {
return CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new ClassA();
});
}
public CompletableFuture<ClassB> retrieveClassB() {
return CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new ClassB();
});
}
public CompletableFuture<ClassC> retrieveClassC() {
return CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new ClassC();
});
}
}
......
public static void main (String[] args){
CompletableFuture<ClassA> classAfuture = futureProvider.retrieveClassA();
CompletableFuture<ClassB> classBfuture = futureProvider.retrieveClassB();
CompletableFuture<ClassC> classCfuture = futureProvider.retrieveClassC();
System.out.println("starting completable futures ...");
long startTime = System.nanoTime();
ABCData ABCData = CompletableFuture.allOf(classAfuture, classBfuture, classCfuture)
.thenApplyAsync(ignored ->
combineFunction.combind(
classAfuture.join(),
classBfuture.join(),
classCfuture.join())
).join();
long endTime = System.nanoTime();
long duration = (endTime - startTime);
System.out.println("completable futures are complete...");
System.out.println("duration:\t" + Duration.ofNanos(duration).toString());
System.out.println("result:\t" + ABCData);
}
Another way to handle this if you don't want to declare as many variables is to use thenCombine or thenCombineAsync to chain your futures together.
public CompletableFuture<ClassD> getResultClassD()
{
return CompletableFuture.supplyAsync(ClassD::new)
.thenCombine(CompletableFuture.supplyAsync(service::getClassA), (d, a) -> {
d.setClassA(a);
return d;
})
.thenCombine(CompletableFuture.supplyAsync(service::getClassB), (d, b) -> {
d.setClassB(b);
return d;
})
.thenCombine(CompletableFuture.supplyAsync(service::getClassC), (d, c) -> {
d.setClassC(c);
return d;
});
}
The getters will still be fired off asynchronously and the results executed in order. It's basically another syntax option to get the same result.
I have 3 CompletableFutures all 3 returning different data types.
I am looking to create a result object that is a composition of the result returned by all the 3 futures.
So my current working code looks like this:
public ClassD getResultClassD() {
ClassD resultClass = new ClassD();
CompletableFuture<ClassA> classAFuture = CompletableFuture.supplyAsync(() -> service.getClassA() );
CompletableFuture<ClassB> classBFuture = CompletableFuture.supplyAsync(() -> service.getClassB() );
CompletableFuture<ClassC> classCFuture = CompletableFuture.supplyAsync(() -> service.getClassC() );
CompletableFuture.allOf(classAFuture, classBFuture, classCFuture)
.thenAcceptAsync(it -> {
ClassA classA = classAFuture.join();
if (classA != null) {
resultClass.setClassA(classA);
}
ClassB classB = classBFuture.join();
if (classB != null) {
resultClass.setClassB(classB);
}
ClassC classC = classCFuture.join();
if (classC != null) {
resultClass.setClassC(classC);
}
});
return resultClass;
}
My questions are:
My assumption here is that since I am using allOf and thenAcceptAsync this call will be non blocking. Is my understanding right ?
Is this the right way to deal with multiple futures returning different result types ?
Is it right to construct ClassD object within thenAcceptAsync ?
Is it appropriate to use the join or getNow method in the thenAcceptAsync lambda ?
Your attempt is going into the right direction, but not correct. Your method getResultClassD() returns an already instantiated object of type ClassD on which an arbitrary thread will call modifying methods, without the caller of getResultClassD() noticing. This can cause race conditions, if the modifying methods are not thread safe on their own, further, the caller will never know, when the ClassD instance is actually ready for use.
A correct solution would be:
public CompletableFuture<ClassD> getResultClassD() {
CompletableFuture<ClassA> classAFuture
= CompletableFuture.supplyAsync(() -> service.getClassA() );
CompletableFuture<ClassB> classBFuture
= CompletableFuture.supplyAsync(() -> service.getClassB() );
CompletableFuture<ClassC> classCFuture
= CompletableFuture.supplyAsync(() -> service.getClassC() );
return CompletableFuture.allOf(classAFuture, classBFuture, classCFuture)
.thenApplyAsync(dummy -> {
ClassD resultClass = new ClassD();
ClassA classA = classAFuture.join();
if (classA != null) {
resultClass.setClassA(classA);
}
ClassB classB = classBFuture.join();
if (classB != null) {
resultClass.setClassB(classB);
}
ClassC classC = classCFuture.join();
if (classC != null) {
resultClass.setClassC(classC);
}
return resultClass;
});
}
Now, the caller of getResultClassD() can use the returned CompletableFuture to query the progress state or chain dependent actions or use join() to retrieve the result, once the operation is completed.
To address the other questions, yes, this operation is asynchronous and the use of join() within the lambda expressions is appropriate. join was exactly created because Future.get(), which is declared to throw checked exceptions, makes the use within these lambda expressions unnecessarily hard.
Note that the null tests are only useful, if these service.getClassX() can actually return null. If one of the service calls fails with an exception, the entire operation (represented by CompletableFuture<ClassD>) will complete exceptionally.
I was going down a similar route to what #Holger was doing in his answer, but wrapping the Service Calls in an Optional, which leads to cleaner code in the thenApplyAsync stage
CompletableFuture<Optional<ClassA>> classAFuture
= CompletableFuture.supplyAsync(() -> Optional.ofNullable(service.getClassA())));
CompletableFuture<Optional<ClassB>> classBFuture
= CompletableFuture.supplyAsync(() -> Optional.ofNullable(service.getClassB()));
CompletableFuture<Optional<ClassC>> classCFuture
= CompletableFuture.supplyAsync(() -> Optional.ofNullable(service.getClassC()));
return CompletableFuture.allOf(classAFuture, classBFuture, classCFuture)
.thenApplyAsync(dummy -> {
ClassD resultClass = new ClassD();
classAFuture.join().ifPresent(resultClass::setClassA)
classBFuture.join().ifPresent(resultClass::setClassB)
classCFuture.join().ifPresent(resultClass::setClassC)
return resultClass;
});
I ran into something similar before and created a short demo to show how I solved this issue.
Similar concept to #Holger except I used a function to combine each individual future.
https://github.com/te21wals/CompletableFuturesDemo
Essentially:
public class CombindFunctionImpl implement CombindFunction {
public ABCData combind (ClassA a, ClassB b, ClassC c) {
return new ABCData(a, b, c);
}
}
...
public class FutureProvider {
public CompletableFuture<ClassA> retrieveClassA() {
return CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new ClassA();
});
}
public CompletableFuture<ClassB> retrieveClassB() {
return CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new ClassB();
});
}
public CompletableFuture<ClassC> retrieveClassC() {
return CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return new ClassC();
});
}
}
......
public static void main (String[] args){
CompletableFuture<ClassA> classAfuture = futureProvider.retrieveClassA();
CompletableFuture<ClassB> classBfuture = futureProvider.retrieveClassB();
CompletableFuture<ClassC> classCfuture = futureProvider.retrieveClassC();
System.out.println("starting completable futures ...");
long startTime = System.nanoTime();
ABCData ABCData = CompletableFuture.allOf(classAfuture, classBfuture, classCfuture)
.thenApplyAsync(ignored ->
combineFunction.combind(
classAfuture.join(),
classBfuture.join(),
classCfuture.join())
).join();
long endTime = System.nanoTime();
long duration = (endTime - startTime);
System.out.println("completable futures are complete...");
System.out.println("duration:\t" + Duration.ofNanos(duration).toString());
System.out.println("result:\t" + ABCData);
}
Another way to handle this if you don't want to declare as many variables is to use thenCombine or thenCombineAsync to chain your futures together.
public CompletableFuture<ClassD> getResultClassD()
{
return CompletableFuture.supplyAsync(ClassD::new)
.thenCombine(CompletableFuture.supplyAsync(service::getClassA), (d, a) -> {
d.setClassA(a);
return d;
})
.thenCombine(CompletableFuture.supplyAsync(service::getClassB), (d, b) -> {
d.setClassB(b);
return d;
})
.thenCombine(CompletableFuture.supplyAsync(service::getClassC), (d, c) -> {
d.setClassC(c);
return d;
});
}
The getters will still be fired off asynchronously and the results executed in order. It's basically another syntax option to get the same result.