Who defined the currently known performance testing metrics? - performance

Currently I am doing a research work about performance testing. I have found a lot of websites, where the following metrics are listed as the most important system metrics:
speed
scalability
stability
reliability.
I would like to 'cite'/'reference' this list properly, but nobody wrote where it comes from and I wouldn't want to cite Wikipedia in my paper.
I've been wondering whether someone defined this in his work or common usage defined this list.
Does someone have more information about this topic?

Related

How can I generate performance metrics without storing much data? (Quantile Streaming)

It's such a common problem but the answers are hard to find. I want to measure the performance of [ web server 95th percentile response time | API calls | algorithm performance | disk I/O | whatever ]. But, you know, that's a lot of data and I don't want to store it because this is used in production. Also, I don't want to spend a lot of CPU time calculating how slow my software is.
If you search for answers, you'll see many references to ancient algorithms that store a ton of data in bins or keep a large reservoir of random sample data. Common results include P-square and binmedian , and notice it's hard to find any decent implementations because although they're commonly suggested they're also garbage and nobody with a clue uses them.
You'll also find clever-sounding answers you can't implement because half the explanation is missing. Maybe if you were a stats major you'd understand this.
So what can I use to get cheap performance statistics? Algorithm and source code, please.
Looking for algorithms means entering the realm of Academia, so it's helpful to know the proper name of the problem. We're looking for a Streaming Algorithm, probably Quantile Streaming although you may want other statistics too. Search for that phrase and you'll get more informed answers.
One easy answer is this paper, a collaboration between Amazon and Academia describing the state of the art as of 2007. It provides a high-level view of the Greenwald-Khanna (GK) and Q-Digest algorithms. You can actually find those algorithms in libraries. This library has an easy to use looking C++ and JS implementation. The Intel Math Kernel Library implements Zhang 2007.
While the sengelha library looks easy to use and good enough for most needs, the world has moved on since 2007. A paper from this year (Amazon, Yahoo, and Academia) describes the "lazy kll" algorithm which is implemented in the Data Sketches library (C++, Java, Python) here.
This information should be enough to let you generate quantile data from your software or even distributed software, and I hope others post even better answers.

Short term CPU scheduling on heterogeneous architectures

Firstly, I'd like to mention I wasn't sure where this question should go. It may be better of in a sister site but I didn't know which one therefore if it is in the wrong category, would someone be able to migrate it?
I'm conducting some research into how heterogeneous architectures work in terms of the short term scheduling queue. I know its a collection of different processors such as CPU's and GPU's.
I also found out some information regarding asymmetric scheduling. I know homogeneous uses symmetrical, but struggling to understand how heterogeneous works?

Evaluation of Code Metrics [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed last year.
Improve this question
There has been a considerable amout of discussion about code metrics (e.g.: What is the fascination with code metrics?). I (as a software developer) am really interested in those metrics because I think that they can help one to write better code. At least they are helpful when it comes to finding areas of code that need some refactoring.
However, what I would like to know is the following. Are there some evaluations of those source code metrics that prove that they really do correlate with the bug-rate or the maintainability of a method. For example: Do methods with a very high cyclomatic-complexity really introduce more bugs than methods with a low complexity? Or do methods with a high difficulty level (Halstead) really need much more amount to maintain them than methods with a low one?
Maybe someone knows about some reliable research in this area.
Thanks a lot!
Good question, no straight answer.
There are research papers available that show relations between, for example, cyclomatic complexity and bugs. The problem is that most research papers are not freely available.
I have found the following: http://www.pitt.edu/~ckemerer/CK%20research%20papers/CyclomaticComplexityDensity_GillKemerer91.pdf. Though it shows a relation between cyclomatic complexity and productivity. It has a few references to other papers however, and it is worth trying to google them.
Here are some:
Object-oriented metrics that predict maintainability
A Quantitative Evaluation of Maintainability Enhancement by Refactoring
Predicting Maintainability with Object-Oriented Metrics - An Empirical Comparison
Investigating the Effect of Coupling Metrics on Fault Proneness in Object-Oriented Systems
The Confounding Effect of Class Size on the Validity of Object-Oriented Metrics
Have a look at this article from Microsoft research. In general I'm dubious of development wisdom coming out of Microsoft, but they do have the resources to be able to do long-term studies of large products. The referenced article talks about the correlation they've found between various metrics and project defect rate.
Finally I did find some papers about the correlation between software metrics and the error-rate but none of them was really what I was looking for. Most of the papers are outdated (late 80s or early 90s).
I think that it would be quite a good idea to start an analysis of current software. In my opinion it should be possible to investigate some populare open source systems. The source code is available and (what I think is much more important) many projects use issue trackers and some kind of version control system. Probably it would be possible to find a strong link between the log of the versioning systems and the issue trackers. This would lead to a very interesting possibility of analyzing the relation between some software metrics and the bug rate.
Maybe there still is a project out there that does exactly what I've described above. Does anybody know about something like that?
We conducted an empirical study about the bug prediction capabilities of the well-known Chidamber and Kemerer object-oriented metrics. It turned out these metrics combined can predict bugs with an accuracy of above 80% when we applied proper machine learning models. If you are interested, you can ready the full study in the following paper:
"Empirical Validation of Object-Oriented Metrics on Open Source Software for Fault Prediction. In IEEE Transactions on Software Engineering, Vol. 31, No. 10, October 2005, pages 897-910."
I too was once fascinated with the promises of code metrics for measuring likely quality, and discovering how long it would take to write a particular piece of code given its design complexity. Sadly, the vast majority of claims for metrics were hype and never bore any fruit.
The largest problem is that the outputs we want to know (quality, time, $, etc.) depend on too many factors that cannot all be controlled for. Here is just a partial list:
Tool(s) Operating system
Type of code (embedded, back-end, GUI, web)
Developer experience level
Developer skill level
Developer background
Management environment
Quality focus
Coding standards
Software processes
Testing environment/practices
Requirements stability
Problem domain (accounting/telecom/military/etc.)
Company size/age
System architecture
Language(s)
See here for a blog that discusses many of these issues, giving sound reasons for why the things we have tried so far have not worked in practice. (Blog is not mine.)
https://shape-of-code.com
This link is good, as it deconstructs one of the most visible metrics, the Maintainability Index, found in Visual Studio:
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
See this paper for a good overview of quite a large number of metrics, showing that they do not correlate well with program understandability (which itself should correlate with maintainability): "Automatically Assessing Code Understandability: How Far Are We?", by Scalabrino et al.

How to measure software development performance? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
I am looking after some ways to measure the performance of a software development team. Is it a good idea to use the build tool? We use Hudson as an automatic build tool. I wonder if I can take the information from Hudson reports and obtain from it the progress of each of the programmers.
The main problem with performance metrics like this, is that humans are VERY good at gaming any system that measures their own performance to maximize that exact performance metric - usually at the expense of something else that is valuable.
Lets say we do use the hudson build to gather stats on programmer output. What could you look for, and what would be the unintended side effects of measuring that once programmers are clued onto it?
Lines of code (developers just churn out mountains of boilerplate code, and other needless overengineering, or simply just inline every damn method)
Unit test failures (don't write any unit tests, then they won't fail)
Unit test coverage (write weak tests that exercise the code, but don't really test it properly)
Number of bugs found in their code (don't do any coding, then you won't get bugs)
Number of bugs fixed (choose the easy/trivial bugs to work on)
Actual time to finish a task based against their own estimate (estimate higher to give more room)
And it goes on.
The point is, no matter what you measure, humans (not just programmers) get very good at optimizing to meet exactly that thing.
So how should you look at the performance of your developers? Well, that's hard. And it involves human managers, who are good at understanding people (and the BS they pull), and can look at each person subjectively in the context of who/where/what they are to figure out if they are doing a good job or not.
What you do once you've figured out who is/isn't performing is a whole different question though.
(I can't take credit for this line of thinking. It's originally from Joel Spolsky. Here and here)
Do NOT measure the performance of each individual programmer simply using the build tool. You can measure the team as a whole, sure, or you can certainly measure the progress of each programmer, but you cannot measure their performance with such a tool. Some modules are more complicated than others, some programmers are tasked with other projects, etc. It's not a recommended way of doing this, and it will encourage programmers to write sloppy code so that it looks like they did the most work.
No.
Metrics like that are doomed to failure. Different people work on different parts of the code, on different classes of problem, and absolute measurements are misleading at best.
The way to measure developer performance is to have excellent managers that do their job well, have good specs that accurately reflect requirements, and track everyone's progress carefully against those specs.
It's hard to do right. A software solution won't work.
I think this needs a very careful approach when deciding the ways to measure developers performance as most the traditional methods such as line of codes, number of check ins, number of bugs fixed etc. are proven to be subjective with todays software engineering concepts. We need to value team performance approach rather measuring individual KPIs in a project. However working in commercial development environment its important to keep a track and a close look at following factors of individual developers;
Code review comments – Each project, we can decide the number of code reviews need to be conducted for a given period. Based on the code reviews individuals get remarks about their coding standard improvements. Recurring issues of code reviews of same individual’s code needs to be brought in to attention. You can use automated code reviews tools or manual code reviews.
Test coverage and completeness of tests. – The % covered needs to be decided upfront and if certain developer fails to attempt it often, it needs to be taken care of.
Willingness to sign in to complex tasks and deliver them without much struggle
Achieving what’s defined as “Done” in a user story
Mastery level of each technical area.
With agile approach in some of the projects, the measurements of the development team and the expected performance are decided based on the releases. At each release planning there are different ‘contracts’ negotiated with the team members for the expected performance. I find this approach is more successful as there is no reason of adhering to UI related measurements in a release where there is a complex algorithm to be released.
I would NOT recommend using build tool information as a way to measure the performance / progress of software developers. Some of the confounding problems: possibly one task is considerably harder than another; possibly one task is much more involved in "design space" than "implementation space"; possibly (probably) the more efficient solution is the better solution, but that better solution contributes less lines of code than a terribly inefficient one which provides many many more lines of code; etc.
Speaking of KPI in software developers. www.smartKPIs.com may be a good resource for you. It contains a user friendly library of well-documented performance measures. At the moment it lists over 3300 KPI examples, grouped in 73 functional areas, as well as 83 industries and sub-categories.
KPI examples for the software developers are available on this page www.smartKPIs.com - application development They include but not limited to:
Defects removal efficiency
Data redundancy
In addition to examples of performance measures, www.smartKPIs.com also contains a catalogue of performance reports that illustrate the use of KPIs in practice.
Examples of such reports for information technology are available on: www.smartKPIs.com - KPIs in practice - information technology
The website is updated daily with new content, so check it from time to time for additional content.
Please note that while examples of performance measures are useful to inform decisions, each performance measure needs to be selected and customized based on the objectives and priorities of each organisation.
You would probably do better measuring how well your team tracks to schedules. If a team member (or entire team) is consistantly late, you will need to work with them to improve performance.
Don't short-cut or look for quick and easy ways to measure performance/progress of developers. There are many many factors that affect the output of a developer. I've seen alot of people try various metrics ...
Lines of code produced - encourages developers to churn out inefficient garbage
Complexity measures - encourages over analysis and refactoring
Number of bugs produced - encourages people to seek out really simple tasks and to hate your testers
... the list goes on.
When reviewing a developer you really need to look at how good their work is and define "good" in the context of what the comany needs and what situations/positions the company has put that indivual in. Progress should be evaluated with equal consideration and thought.
There are many different ways of doing this. Entire books written on the subject. You could use reports from Hudson but I think that would lead to misinformation and provide crude results. Really you need to have task tracking methodology.
Check how many lines of the codes each has written.
Then fire the bottom 70%.. NO 90%!... EVERY DAY!
(for the folks that aren't sure, YES, I am joking. Serious answer here)
We get 360 feedback from everyone on the team. If all your team members think you are crap, then you probably are.
There is a common mistake that many businesses make when setting up their release management tool. The Salesforce release management toolkit is one of the best ones available in the market today, but if you do not follow the vital steps of setting it up, you will definitely have some very bad results. You will get to use it but not to its full capacity. Establishing release management processes in isolation from the business processes is one of the worst mistakes to make. Release management tools go hand in hand with the enterprise strategy, objectives, governance, change management plus some other aspects. The processes of release management need to be formed in such a way that everyone in the business is on the same page.
Goals of release management
The main goal of release management is to have a consistent set of reliable and repeatable processes that are resource independent. This enables the achievement of the most favorable business value while at the same time optimizing the utilization of resources available. Considering that most organizations focus on running short, high-yield business projects, it is essential for optimization of the delivery value chain of the application to make certain that there are no holdups in the delivery of the business value.
Take for instance the force.com migration toolkit, as this tool has proven to be great in governance. A release management tool should allow for optimal visibility and accountability in governance.
Processes and release cycles
The release management processes must be consistent for the whole business. It is necessary to have streamlined and standardized processes across the various tool users. This is because they will be using the same platform and resources that enable efficient completion of their tasks. Having different processes for different divisions of your business can lead to grievous failures in tool management. The different sets of users will need to have visibility into what the others are doing. As aforementioned, visibility is of great importance in any business process.
When it comes to the release cycles, it is also imperative to have one centralized system that will track all the requirements of the different sets of users. It is also necessary to have this system centralized so that software development teams get insight into the features and changes requested by the business. Requests have to become priorities to make sure that the business gets to enjoy maximum benefit. Having a steering team is important because it is involved in the reviewing of business requirements plus also prioritizing the most appropriate changes that the business needs to make.
The changes that should happen to the Salesforce system can be very tricky and therefore having a regular meet up between the business and IT is good. This will help to determine the best changes to make to the system that will benefit the business. By considering the cost and value of implementing a feature, the steering committee has the task of deciding on the most important feature changes to make.
Here also good research http://intersog.com/blog/tech-tips/how-to-manage-millennials-on-software-development-teams
This is an old question but still, something you can do is borrow Velocity from Agile Software Development, where you assign a weight to each task and then you calculate how much "weight" you solve in each sprint (or iteration or whatever DLC you use). Of course this comes in hand with the fact that, like a commenter mentioned before, you need to actively keep track yourself of whether your developers are working or chatting online.
If you know your developers are working responsively, then you can rely on that velocity to give you an estimate of how much work the team can do. If at any iteration this number drops (considerably), then either it was poorly estimated or the team worked less.
Ultimately, the use of KPIs together with velocity can give you per-developer (or per-team) insights on performance.
Typically, directly using metrics for performance measurement is considered a Bad Idea, and one of the easy ways to run a team into the ground.
Now, you can use metrics like % of projects completed on-time, % of churn as code goes toward completion, etc...it's a wide field.
Here's an example:
60% of mission-critical bugs were written by Joe. That's a simple, straightforward metric. Fire Joe, right?
But wait, there's more!
Joe is the Senior Developer. He's the only guy trusted to write ultra-reliable code, every time. He's written about 80% of the mission-critical software, because he's the best.
Metrics are a bad measurement of developers.
I would share my experience and how I learnt a very valuable process on measuring the team performance. I must admit, I have fallen on tracking KPI simply because most of the departments would do the same but not really for the insight until I had the responsibility to evaluate developers performance where after a number of reading I evolved with the following solution.
One every project, I would entertain the team in a discussion on the project requirements and involve them so everyone knows what is to be done. In the same discussion through collaboration we would break the projects in to tasks and weight those tasks. Now previously we would estimate the project completion as 100% where each task has a percentage contribution. Well this did work for a while but was not the best solution. Now we would based the task on weight or points to be exact and use relative measurements to compare the task and differentiate the weights for example. There is a requirement to develop a web form to gather user data.
Task would go about like
1. User Interface - 2 Points
2. Database CRUD - 5 Points
3. Validation - 4 Points
4. Design (css) - 3 Points
With this strategy We can pin point a weekly approximate on how much we have completed and what is pending on the task force. We can also be able to pin point who has performed best.
I must admit that I still face some challenges on this strategy such as not every developer is comfortable on every technology. Somehow some are excited to learn technologies simply because they find 2015 high % of points fall in that section some would do what they can.
Remember, do not track a KPI for their own sake, track it for it's insight.

Software quality metrics [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
Questions asking us to recommend or find a tool, library or favorite off-site resource are off-topic for Stack Overflow as they tend to attract opinionated answers and spam. Instead, describe the problem and what has been done so far to solve it.
Closed 9 years ago.
Improve this question
I was wondering if anyone has experience in metrics used to measure software quality. I know there are code complexity metrics but I'm wondering if there is a specific way to measure how well it actually performs during it's lifetime. I don't mean runtime performance, but rather a measure of the quality. Any suggested tools that would help gather these are welcome too.
Is there measurements to answer these questions:
How easy is it to change/enhance the software, robustness
If it is a common/general enough piece of software, how reusable is it
How many defects were associated with the code
Has this needed to be redesigned/recoded
How long has this code been around
Do developers like how the code is designed and implemented
Seems like most of this would need to be closely tied with a CM and bug reporting tool.
If measuring code quality in the terms you put it would be such a straightforward job and the metrics accurate, there would probably be no need for Project Managers anymore. Even more, the distinction between good and poor managers would be very small. Because it isn't, that just shows that getting an accurate idea about the quality of your software, is no easy job.
Your questions span to multiple areas that are quantified differently or are very subjective to quantification, so you should group these into categories that correspond to common targets. Then you can assign an "importance" factor to each category and derive some metrics from that.
For instance you could use static code analysis tools for measuring the syntactic quality of your code and derive some metrics from that.
You could also derive metrics from bugs/lines of code using a bug tracking tool integrated with a version control system.
For measuring robustness, reuse and efficiency of the coding process you could evaluate the use of design patterns per feature developed (of course where it makes sense). There's no tool that will help you achieve this, but if you monitor your software growing bigger and put numbers on these it can give you a pretty good idea of how you project is evolving and if it's going in the right direction. Introducing code-review procedures could help you keep track of these easier and possibly address them early in the development process. A number to put on these could be the percentage of features implemented using the appropriate design patterns.
While metrics can be quite abstract and subjective, if you dedicate time to it and always try to improve them, it can give you useful information.
A few things to note about metrics in the software process though:
Unless you do them well, metrics could prove to be more harm than good.
Metrics are difficult to do well.
You should be cautious in using metrics to rate individual performance or offering bonus schemes. Once you do this everyone will try to cheat the system and your metrics will prove worthless.
If you are using Ruby, there are some tools to help you out with metrics ranging from LOCs/Method and Methods/Class Saikuros Cyclomatic complexity.
My boss actually held a presentation on software metric we use at a ruby conference last year, these are the slides.
A interesting tool that brings you a lot of metrics at once is metric_fu. It checks alot of interesting aspects of your code. Stuff that is highly similar, changes a lot, has a lot of branches. All signs your codes could be better :)
I imagine there are lot more tools like this for other languages too.
There is a good thread from the old Joel on Software Discussion groups about this.
I know that some SVN stat programs provide an overview over changed lines per submit. If you have a bugtracking system and persons fixing bugs adding features etc are stating their commit number when the bug is fixed you can then calculate how many line were affected by each bug/new feature request. This could give you a measurement of changeability.
The next thing is simply count the number of bugs found and set them in ratio to the number of code lines. There are some values how many bugs a high quality software should have per codeline.
You could do it in some economic way or in programmer's way.
In case of economic way you mesaure costs of improving code, fixing bugs, adding new features and so on. If you choose the second way, you may want to measure how much staff works with your program and how easy it is to, say, find and fix an average bug in human hours. Certainly they are not flawless, because costs depend on the market situation and human hours depend on the actual people and their skills, so it's better to combine both methods.
This way you get some instruments to mesaure quality of your code. Of course you should take into account the size of your project and other factors, but I hope main idea is clear.
A more customer focused metric would be the average time it takes for the software vendor to fix bugs and implement new features.
It is very easy to calculate, based on your bug tracking software's date created, and closed information.
If your average bug fixing/feature implementation time is extremely high, this could also be an indicator for bad software quality.
You may want to check the following page describing various different aspects of software quality including sample plots. Some of the quality characteristics you require to measure can be derived using tool such as Sonar. It is very important to figure out how would you want to model some of the following aspects:
Maintainability: You did mention about how easy is it to change/test the code or reuse the code. These are related with testability and re-usability aspect of maintainability which is considered to be key software quality characteristic. Thus, you could measure maintainability as a function of testability (unit test coverage) and re-usability (cohesiveness index of the code).
Defects: Defects alone may not be a good idea to measure. However, if you can model defect density, it could give you a good picture.

Resources