Moving balls using vectors - animation

I want to move some balls in specific direction. This direction is determined by a "pointer" - which is a simple line with x1,y1 and x2,y2 coordinates.
From this line I get its vector. v = (x2-x1, y2-y1). This vector is then used to move the balls.
ball.x += v.x;
ball.y += v.y;
This works fine as long as I don't want to slow the balls down. To slow them down I divided the vector by 5, which should result in smaller vector with the same direction.
v = (x2-x1)/5,(y2-y1)/5;
This solution slows the balls down, however it also changes their direction. So it look something like this :
What should I do in order to slow the balls down without this direction change ?

Related

Cover a polygonal line using the least given rectangles while keeping her continuity

Given a list of points forming a polygonal line, and both height and width of a rectangle, how can I find the number and positions of all rectangles needed to cover all the points?
The rectangles should be rotated and may overlap, but must follow the path of the polyline (A rectangle may contain multiple segments of the line, but each rectangle must contain a segment that is contiguous with the previous one.)
Do the intersections on the smallest side of the rectangle, when it is possible, would be much appreciated.
All the solutions I found so far were not clean, here is the result I get:
You should see that it gives a good render in near-flat cases, but overlaps too much in big curbs. One rectangle could clearly be removed if the previous were offset.
Actually, I put a rectangle centered at width/2 along the line and rotate it using convex hull and modified rotating calipers algorithms, and reiterate starting at the intersection point of the previous rectangle and the line.
You may observe that I took inspiration from the minimum oriented rectangle bounding box algorithm, for the orientation, but it doesn't include the cutting aspect, nor the fixed size.
Thanks for your help!
I modified k-means to solve this. It's not fast, it's not optimal, it's not guaranteed, but (IMHO) it's a good start.
There are two important modifications:
1- The distance measure
I used a Chebyshev-distance-inspired measure to see how far points are from each rectangle. To find distance from points to each rectangle, first I transformed all points to a new coordinate system, shifted to center of rectangle and rotated to its direction:
Then I used these transformed points to calculate distance:
d = max(2*abs(X)/w, 2*abs(Y)/h);
It will give equal values for all points that have same distance from each side of rectangle. The result will be less than 1.0 for points that lie inside rectangle. Now we can classify points to their closest rectangle.
2- Strategy for updating cluster centers
Each cluster center is a combination of C, center of rectangle, and a, its rotation angle. At each iteration, new set of points are assigned to a cluster. Here we have to find C and a so that rectangle covers maximum possible number of points. I don’t now if there is an analytical solution for that, but I used a statistical approach. I updated the C using weighted average of points, and used direction of first principal component of points to update a. I used results of proposed distance, powered by 500, as weight of each point in weighted average. It moves rectangle towards points that are located outside of it.
How to Find K
Initiate it with 1 and increase it till all distances from points to their corresponding rectangles become less than 1.0, meaning all points are inside a rectangle.
The results
Iterations 0, 10, 20, 30, 40, and 50 of updating cluster centers (rectangles):
Solution for test case 1:
Trying Ks: 2, 4, 6, 8, 10, and 12 for complete coverage:
Solution for test case 2:
P.M: I used parts of Chalous Road as data. It was fun downloading it from Google Maps. The I used technique described here to sample a set of equally spaced points.
It’s a little late and you’ve probably figured this out. But, I was free today and worked on the constraint reflected in your last edit (continuity of segments). As I said before in the comments, I suggest using a greedy algorithm. It’s composed of two parts:
A search algorithm that looks for furthermost point from an initial point (I used binary search algorithm), so that all points between them lie inside a rectangle of given w and h.
A repeated loop that finds best rectangle at each step and advances the initial point.
The pseudo code of them are like these respectively:
function getBestMBR( P, iFirst, w, h )
nP = length(P);
iStart = iFirst;
iEnd = nP;
while iStart <= iEnd
m = floor((iStart + iEnd) / 2);
MBR = getMBR(P[iFirst->m]);
if (MBR.w < w) & (MBR.h < h) {*}
iStart = m + 1;
iLast = m;
bestMBR = MBR;
else
iEnd = m - 1;
end
end
return bestMBR, iLast;
end
function getRectList( P, w, h )
nP = length(P);
rects = [];
iFirst = 1;
iLast = iFirst;
while iLast < nP
[bestMBR, iLast] = getBestMBR(P, iFirst, w, h);
rects.add(bestMBR.x, bestMBR.y, bestMBR.a];
iFirst = iLast;
end
return rects;
Solution for test case 1:
Solution for test case 2:
Just keep in mind that it’s not meant to find the optimal solution, but finds a sub-optimal one in a reasonable time. It’s greedy after all.
Another point is that you can improve this a little in order to decrease number of rectangles. As you can see in the line marked with (*), I kept resulting rectangle in direction of MBR (Minimum Bounding Rectangle), even though you can cover larger MBRs with rectangles of same w and h if you rotate the rectangle. (1) (2)

In a restricted space with n dimension, how to find the coordinates of p points, so that they are as far as possible from each other?

For example, in a 2D space, with x [0 ; 1] and y [0 ; 1]. For p = 4, intuitively, I will place each point at each corner of the square.
But what can be the general algorithm?
Edit: The algorithm needs modification if dimensions are not orthogonal to eachother
To uniformly place the points as described in your example you could do something like this:
var combinedSize = 0
for each dimension d in d0..dn {
combinedSize += d.length;
}
val listOfDistancesBetweenPointsAlongEachDimension = new List
for each d dimension d0..dn {
val percentageOfWholeDimensionSize = d.length/combinedSize
val pointsToPlaceAlongThisDimension = percentageOfWholeDimensionSize * numberOfPoints
listOfDistancesBetweenPointsAlongEachDimension[d.index] = d.length/(pointsToPlaceAlongThisDimension - 1)
}
Run on your example it gives:
combinedSize = 2
percentageOfWholeDimensionSize = 1 / 2
pointsToPlaceAlongThisDimension = 0.5 * 4
listOfDistancesBetweenPointsAlongEachDimension[0] = 1 / (2 - 1)
listOfDistancesBetweenPointsAlongEachDimension[1] = 1 / (2 - 1)
note: The minus 1 deals with the inclusive interval, allowing points at both endpoints of the dimension
2D case
In 2D (n=2) the solution is to place your p points evenly on some circle. If you want also to define the distance d between points then the circle should have radius around:
2*Pi*r = ~p*d
r = ~(p*d)/(2*Pi)
To be more precise you should use circumference of regular p-point polygon instead of circle circumference (I am too lazy to do that). Or you can compute the distance of produced points and scale up/down as needed instead.
So each point p(i) can be defined as:
p(i).x = r*cos((i*2.0*Pi)/p)
p(i).y = r*sin((i*2.0*Pi)/p)
3D case
Just use sphere instead of circle.
ND case
Use ND hypersphere instead of circle.
So your question boils down to place p "equidistant" points to a n-D hypersphere (either surface or volume). As you can see 2D case is simple, but in 3D this starts to be a problem. See:
Make a sphere with equidistant vertices
sphere subdivision triangulation
As you can see there are quite a few approaches to do this (there are much more of them even using Fibonacci sequence generated spiral) which are more or less hard to grasp or implement.
However If you want to generalize this into ND space you need to chose general approach. I would try to do something like this:
Place p uniformly distributed place inside bounding hypersphere
each point should have position,velocity and acceleration vectors. You can also place the points randomly (just ensure none are at the same position)...
For each p compute acceleration
each p should retract any other point (opposite of gravity).
update position
just do a Newton D'Alembert physics simulation in ND. Do not forget to include some dampening of speed so the simulation will stop in time. Bound the position and speed to the sphere so points will not cross it's border nor they would reflect the speed inwards.
loop #2 until max speed of any p crosses some threshold
This will more or less accurately place p points on the circumference of ND hypersphere. So you got minimal distance d between them. If you got some special dependency between n and p then there might be better configurations then this but for arbitrary numbers I think this approach should be safe enough.
Now by modifying #2 rules you can achieve 2 different outcomes. One filling hypersphere surface (by placing massive negative mass into center of surface) and second filling its volume. For these two options also the radius will be different. For one you need to use surface and for the other volume...
Here example of similar simulation used to solve a geometry problem:
How to implement a constraint solver for 2-D geometry?
Here preview of 3D surface case:
The number on top is the max abs speed of particles used to determine the simulations stopped and the white-ish lines are speed vectors. You need to carefully select the acceleration and dampening coefficients so the simulation is fast ...

Folding a selection of points on a 3D cube

I am trying to find an effective algorithm for the following 3D Cube Selection problem:
Imagine a 2D array of Points (lets make it square of size x size) and call it a side.
For ease of calculations lets declare max as size-1
Create a Cube of six sides, keeping 0,0 at the lower left hand side and max,max at top right.
Using z to track the side a single cube is located, y as up and x as right
public class Point3D {
public int x,y,z;
public Point3D(){}
public Point3D(int X, int Y, int Z) {
x = X;
y = Y;
z = Z;
}
}
Point3D[,,] CreateCube(int size)
{
Point3D[,,] Cube = new Point3D[6, size, size];
for(int z=0;z<6;z++)
{
for(int y=0;y<size;y++)
{
for(int x=0;x<size;x++)
{
Cube[z,y,x] = new Point3D(x,y,z);
}
}
}
return Cube;
}
Now to select a random single point, we can just use three random numbers such that:
Point3D point = new Point(
Random(0,size), // 0 and max
Random(0,size), // 0 and max
Random(0,6)); // 0 and 5
To select a plus we could detect if a given direction would fit inside the current side.
Otherwise we find the cube located on the side touching the center point.
Using 4 functions with something like:
private T GetUpFrom<T>(T[,,] dataSet, Point3D point) where T : class {
if(point.y < max)
return dataSet[point.z, point.y + 1, point.x];
else {
switch(point.z) {
case 0: return dataSet[1, point.x, max]; // x+
case 1: return dataSet[5, max, max - point.x];// y+
case 2: return dataSet[1, 0, point.x]; // z+
case 3: return dataSet[1, max - point.x, 0]; // x-
case 4: return dataSet[2, max, point.x]; // y-
case 5: return dataSet[1, max, max - point.x];// z-
}
}
return null;
}
Now I would like to find a way to select arbitrary shapes (like predefined random blobs) at a random point.
But would settle for adjusting it to either a Square or jagged Circle.
The actual surface area would be warped and folded onto itself on corners, which is fine and does not need compensating ( imagine putting a sticker on the corner on a cube, if the corner matches the center of the sticker one fourth of the sticker would need to be removed for it to stick and fold on the corner). Again this is the desired effect.
No duplicate selections are allowed, thus cubes that would be selected twice would need to be filtered somehow (or calculated in such a way that duplicates do not occur). Which could be a simple as using a HashSet or a List and using a helper function to check if the entry is unique (which is fine as selections will always be far below 1000 cubes max).
The delegate for this function in the class containing the Sides of the Cube looks like:
delegate T[] SelectShape(Point3D point, int size);
Currently I'm thinking of checking each side of the Cube to see which part of the selection is located on that side.
Calculating which part of the selection is on the same side of the selected Point3D, would be trivial as we don't need to translate the positions, just the boundary.
Next would be 5 translations, followed by checking the other 5 sides to see if part of the selected area is on that side.
I'm getting rusty in solving problems like this, so was wondering if anyone has a better solution for this problem.
#arghbleargh Requested a further explanation:
We will use a Cube of 6 sides and use a size of 16. Each side is 16x16 points.
Stored as a three dimensional array I used z for side, y, x such that the array would be initiated with: new Point3D[z, y, x], it would work almost identical for jagged arrays, which are serializable by default (so that would be nice too) [z][y][x] but would require seperate initialization of each subarray.
Let's select a square with the size of 5x5, centered around a selected point.
To find such a 5x5 square substract and add 2 to the axis in question: x-2 to x+2 and y-2 to y+2.
Randomly selectubg a side, the point we select is z = 0 (the x+ side of the Cube), y = 6, x = 6.
Both 6-2 and 6+2 are well within the limits of 16 x 16 array of the side and easy to select.
Shifting the selection point to x=0 and y=6 however would prove a little more challenging.
As x - 2 would require a look up of the side to the left of the side we selected.
Luckily we selected side 0 or x+, because as long as we are not on the top or bottom side and not going to the top or bottom side of the cube, all axis are x+ = right, y+ = up.
So to get the coordinates on the side to the left would only require a subtraction of max (size - 1) - x. Remember size = 16, max = 15, x = 0-2 = -2, max - x = 13.
The subsection on this side would thus be x = 13 to 15, y = 4 to 8.
Adding this to the part we could select on the original side would give the entire selection.
Shifting the selection to 0,6 would prove more complicated, as now we cannot hide behind the safety of knowing all axis align easily. Some rotation might be required. There are only 4 possible translations, so it is still manageable.
Shifting to 0,0 is where the problems really start to appear.
As now both left and down require to wrap around to other sides. Further more, as even the subdivided part would have an area fall outside.
The only salve on this wound is that we do not care about the overlapping parts of the selection.
So we can either skip them when possible or filter them from the results later.
Now that we move from a 'normal axis' side to the bottom one, we would need to rotate and match the correct coordinates so that the points wrap around the edge correctly.
As the axis of each side are folded in a cube, some axis might need to flip or rotate to select the right points.
The question remains if there are better solutions available of selecting all points on a cube which are inside an area. Perhaps I could give each side a translation matrix and test coordinates in world space?
Found a pretty good solution that requires little effort to implement.
Create a storage for a Hollow Cube with a size of n + 2, where n is the size of the cube contained in the data. This satisfies the : sides are touching but do not overlap or share certain points.
This will simplify calculations and translations by creating a lookup array that uses Cartesian coordinates.
With a single translation function to take the coordinates of a selected point, get the 'world position'.
Using that function we can store each point into the cartesian lookup array.
When selecting a point, we can again use the same function (or use stored data) and subtract (to get AA or min position) and add (to get BB or max position).
Then we can just lookup each entry between the AA.xyz and BB.xyz coordinates.
Each null entry should be skipped.
Optimize if required by using a type of array that return null if z is not 0 or size-1 and thus does not need to store null references of the 'hollow cube' in the middle.
Now that the cube can select 3D cubes, the other shapes are trivial, given a 3D point, define a 3D shape and test each part in the shape with the lookup array, if not null add it to selection.
Each point is only selected once as we only check each position once.
A little calculation overhead due to testing against the empty inside and outside of the cube, but array access is so fast that this solution is fine for my current project.

An algorithm to randomly place circles at least D distance apart

I'm trying to work out how to write an algorithm to randomly place circles of R radius, in a 2d rectangle of arbitrary dimensions, such that each placed circle is at least D distance away from other circles in the rectangle,
The rectangle doesn't need to be filled, to be more specific older circles may be destroyed, so I need to be able to place a new circle that respects the positions of the last N circles I've already placed (say 5 for eg), if it can't satisfy these conditions then I could handle it seperately.
Can anyone help me how to deduce such an algorithm, or perhaps point to some research that may cover this?
1 Place circle at random location
2 Loop over previous circles
3 if too close
4 delete new circle
5 goto 1
6 if need more circles
7 goto 1
To determine if there is room
Choose resolution required, say delta = D/100
for( x = 0; x < rectangle_size x += delta )
for( y = 0; y < rectangle_size y += delta )
unset failed
loop over circles
if x,y less than 2D from circle
set failed
break from circle loop
if not failed
return 'yes there is room'
return 'no, there is no room'
If you expect to have so many circles that there only a few holes left with room for new circles, then you could do this
clear candidates
Choose resolution required, say delta = D/100
for( x = 0; x < rectangle_size x += delta )
for( y = 0; y < rectangle_size y += delta )
unset failed
loop over circles
if x,y less than 2D from circle
set failed
break from circle loop
if not failed
add x,y to candidates
if no candidates
return 'there is no room'
randomly choose location for new circle from candidates
1. Pick random startingspot.
2. Place circle
3. Move in random direction at least D
4. Goto 2 until distance to edge is < D or the distance to another circles center is < 2D
The first algorithm to come to mind is simulated annealing. Basically, you start out with the easiest solution, probably just a grid, then you "shake the box" in random ways to see if you get better answers. First you do large shakes, then gradually make them smaller. It sounds a little chaotic, and doesn't always produce the absolute best solution, but when something is computationally intensive it usually comes pretty close in a lot shorter time.
It really depends on what you mean by "random". Assuming that you want as close to a uniform distribution as possible, you will probably have to use an iterative solution like the one ravenspoint suggested. It may be slightly faster to place all of the circles randomly and then start replacing circles that don't meet your distance condition.
If the randomness isn't that important - i.e. if it just has to "look" random (which is probably fine if you're not doing something scientific), then grid your space up and place your N circles by choosing N indices in the grid. You could make it slightly more "random" by adding some noise to the location that you place the circle inside the grid. This would work really well for sparse placement.

Fast Collision Detection for Circle Insertion into 2D Plane

I know there are lots of posts about collision detection generally for sprites moving about a 2D plane, but my question is slightly different.
I'm inserting circles into a 2D plane. The circles have variable radii. I'm trying to optimize my method of finding a random position within the plane where I can insert a new circle without it colliding with any other circles already on the plane. Right now I'm using a very "un-optimized" approach that simply generates a random point within the plane and then checks it against all the other circles on the plane.
Are there ways to optimize this? For this particular app, the bounds of the plane can only hold 20-25 circles at a time and typically there are between 5-10 present. As you would expect, when the number of circles approaches the max that can fit, you have to test many points before finding one that works. It gets very slow.
Note: safeDistance is the radius of the circle I want to add to the plane.
Here's the code:
- (CGPoint)getSafePosition:(float)safeDistance {
// Point must be far enough from edges
// Point must be far enough from other sprites
CGPoint thePoint;
BOOL pointIsSafe = NO;
int sd = ceil(safeDistance);
while(!pointIsSafe) {
self.pointsTested++; // DEBUG
// generate a random point inside the plane boundaries to test
thePoint = CGPointMake((arc4random() % ((int)self.manager.gameView.frame.size.width - sd*2)) + sd,
(arc4random() % ((int)self.manager.gameView.frame.size.height - sd*2)) + sd);
if(self.manager.gameView.sprites.count > 0) {
for(BasicSprite *theSprite in self.manager.gameView.sprites) {
// get distance between test point and the sprite position
float distance = [BasicSprite distanceBetweenPoints:thePoint b:theSprite.position];
// check if distance is less than the sum of the min safe distances of the two entities
if(distance < (safeDistance + [theSprite minSafeDistance])) {
// point not safe
pointIsSafe = NO;
break;
}
// if we get here, the point did not collide with the last tested point
pointIsSafe = YES;
}
}
else {
pointIsSafe = YES;
}
}
return thePoint;
}
Subdivide your window into w by h blocks. You'll be maintaining a w by h array, dist. dist[x][y] contains the size of the largest circle that can be centred at (x, y). (You can use pixels as blocks, although we'll be updating the entire array with each circle placed, so you may want to choose larger blocks for improved speed, at the cost of slightly reduced packing densities.)
Initialisation
Initially, set all dist[x][y] to min(x, y, w - x, h - y). This encodes the limits given by the bounding box that is the window.
Update procedure
Every time you add a circle to the window, say one positioned at (a, b) with radius r, you need to update all elements of dist.
The update required for each position (x, y) is:
dist[x][y] = min(dist[x][y], sqrt((x - a)^2 + (y - b)^2) - r);
(Obviously, ^2 here means squaring, not XOR.) Basically, we are saying: "Set dist[x][y] to the minimum distance to the circle just placed, unless the situation is already worse than that." dist values for points inside the circle just placed will be negative, but that doesn't matter.
Finding the next location
Then, when you want to insert the next circle of radius q, just scan through dist looking for a location with dist value >= q. (If you want to randomly choose such a location, find the complete list of valid locations and then randomly choose one.)
Honestly, with only 20-25 circles, you're not going to get much of a speed boost by using a fancier algorithm or data structure (e.g. a quadtree or a kd-tree). Everything is fast for small n.
Are you absolutely sure this is the bottleneck in your application? Have you profiled? If yes, then the way you're going to speed this up is through microoptimization, not through advanced algorithms. Are you making lots of iterations through the while loop because most of the plane is unsafe?
You could split your plane in lots of little rectangles (slightly quadtree-related) and save which rectangles are hit by at least one of the circles.
When you look for a insertion-point, you'll just have to look for some "empty" ones (which doesn't need any random jumps and is possible in constant time).
The number and constellation of rectangles can be computed by the radius.
Just an outline, since this solution is fairly involved.
If you want to guarantee you always find a place to put a circle if it's possible, you can do the following. Consider each existing circle C. We will try to find a location where we can place the new circle so that it is touching C. For each circle D (other than C) that is sufficiently close to C, there will be a range of angles where placing a new circle at one of those angles around C will make it intersect with D. Some geometry will give you that range. Similarly, for each of the four boundaries that are close enough to C, there will be a range of angles where placing a new circle at one of those angles will make it intersect with the boundary. If all these intervals cover all 360 degrees around C, then you cannot place a circle adjacent to C, and you will have to try the next circle, until there are no more candidates for C. If you find a place to put the new circle, you can move it some random distance away from C so that all your new circles do not have to be adjacent to an existing circle if that is not necessary.

Resources