I need a fast polygon clipping implementation against an axis aligned rectangle and I've implemented Sutherland–Hodgman algorithm based on my particular data set and it's 40 to 100 times faster than ClipperLib and other generic polygon clipping algorithms, but the output is a degenerate polygon in some cases:
results in:
Is there a variation of Sutherland–Hodgman algorithm to generate multiple polygons instead of a degenerate one or any fast and simple way to transform the degenerate polygon into multiple polygons?
I'm implementing the A* pathfinding algorithm into a grid based engine, but I'm wanting to create nodes in polygonal areas rather than just using the grid points.
There will be obstacles in the area, that shouldn't be moved through.
I'm wondering is there some algorithm that can split up a larger area with obstacles into a graph with the smallest possible number of connected convex polygons?
There's a lot of them. Typically you're dealing with your triangulation algorithms. You remove the lines that travel through an obstacle and likely do a shortest path algorithm on it. I'm not sure why you want the smallest number of connected convex polygons though, but that could equally be done. The answer is simply the convex hull of the points. One polygon is by definition the smallest number there.
There are quite many algoritms for finding Voronoi diagram with Euclidean distance. However, I haven't found any algorithms other distance functions, for example, Manhattan distance (perhaps, because of no practical applications).
You can see example at Wikipedia:
https://en.wikipedia.org/wiki/Voronoi_diagram#/media/File:Manhattan_Voronoi_Diagram.svg
Manhattan Voronoi diagram also consists of polygons (but non-convex), so I guess that algorithm similar to Fortune's algorithm can be constructed.
However, using more complex distance functions, boundaries won't be polygons anymore. There will be need in different data structure and algorithm.
Are there any algorithms for finding Voronoi diagram with specific distance function (in 2D for simplicity)?
Note:
I don't need an algorithm which works with pixels, it's pretty straightforward, I need algorithm, which founds the boundaries of cells.
Note 2
Practically I need Voronoi diagram with distance function abs(dx)^3 + abs(dy)^3, however, theoretically, I'm interested how one do make an algorithm for other distance functions.
Here is how Voronoi with abs(dx)^3 + abs(dy)^3 look like. Sites are continous and their edges resemble graphs of y=x^3 (just assumption).
Most likely you can use the pixel taxi voronoi and give each polygon a different color. You can then use a pixel color test to check the bounds.
There is a problem in my book that uses the concept of closest-point and farthest-point Voronoi diagrams to construct a minimum width annulus for a set of points (used in coordinate measurement machines).
What I need to know:
Say you construct the closest-point voronoi diagram (CPVD) and the farthest-point voronoi diagram (FPVD) on a set of points P. What is an efficient way to find the intersections between the CPVD's edges and the FPVD's edges (if you overlay the two diagrams) if you know there are only O(n) intersections.
I just can't think of a way that is faster than O(n^2). Is there some property I'm glossing over?
I'm writing an app that looks up points in two-dimensional space using a k-d tree. It would be nice, during development, to be able to "see" the nearest-neighbor zones surrounding each point.
In the attached image, the red points are points in the k-d tree, and the blue lines surrounding each point bound the zone where a nearest neighbor search will return the contained point.
The image was created thusly:
for each point in the space:
da = distance to nearest neighbor
db = distance to second-nearest neighbor
if absolute_value(da - db) < 4:
draw blue pixel
This algorithm has two problems:
(more important) It's slow on my (reasonably fast Core i7) computer.
(less important) It's sloppy, as you can see by the varying widths of the blue lines.
What is this "visualization" of a set of points called?
What are some good algorithms to create such a visualization?
This is called a Voronoi Diagram and there are many excellent algorithms for generating them efficiently. The one I've heard about most is Fortune's algorithm, which runs in time O(n log n), though others algorithms exist for this problem.
Hope this helps!
Jacob,
hey, you found an interesting way of generating this Voronoi diagram, even though it is not so efficient.
The less important issue first: the varying thickness boundaries that you get, those butterfly shapes, are in fact the area between the two branches of an hyperbola. Precisely the hyperbola given by the equation |da - db| = 4. To get a thick line instead, you have to modify this criterion and replace it by the distance to the bisector of the two nearest neighbors, let A and B; using vector calculus, | PA.AB/||AB|| - ||AB||/2 | < 4.
The more important issue: there are two well known efficient solutions to the construction of the Voronoi diagram of a set of points: Fortune's sweep algorithm (as mentioned by templatetypedef) and Preparata & Shamos' Divide & Conquer solutions. Both run in optimal time O(N.Lg(N)) for N points, but aren't so easy to implement.
These algorithm will construct the Voronoi diagram as a set of line segments and half-lines. Check http://en.wikipedia.org/wiki/Voronoi_diagram.
This paper "Primitives for the manipulation of general subdivisions and the computation of Voronoi" describes both algorithms using a somewhat high-level framework, caring about all implementation details; the article is difficult but the algorithms are implementable.
You may also have a look at "A straightforward iterative algorithm for the planar Voronoi diagram", which I never tried.
A totally different approach is to directly build the distance map from the given points for example by means of Dijkstra's algorithm: starting from the given points, you grow the boundary of the area within a given distance from every point and you stop growing when two boundaries meet. [More explanations required.] See http://1.bp.blogspot.com/-O6rXggLa9fE/TnAwz4f9hXI/AAAAAAAAAPk/0vrqEKRPVIw/s1600/distmap-20-seed4-fin.jpg
Another good starting point (for efficiently computing the distance map) can be "A general algorithm for computing distance transforms in linear time".
From personal experience: Fortune's algorithm is a pain to implement. The divide and conquer algorithm presented by Guibas and Stolfi isn't too bad; they give detailed pseudocode that's easy to transcribe into a procedural programming language. Both will blow up if you have nearly degenerate inputs and use floating point, but since the primitives are quadratic, if you can represent coordinates as 32-bit integers, then you can use 64 bits to carry out the determinant computations.
Once you get it working, you might consider replacing your kd-tree algorithms, which have a Theta(√n) worst case, with algorithms that work on planar subdivisions.
You can find a great implementation for it at D3.js library: http://mbostock.github.com/d3/ex/voronoi.html