Related
For my bachelor thesis I need to analyse images taken in the ocean to count and measure the size of water particles.
my problem:
besides the wanted water particles, the images show hexagonal patches all over the image in:
- different sizes
- not regular shape
- different greyscale values
(Example image below!)
It is clear that these patches will falsify my image analysis concerning the size and number of particles.
For this reason this patches need to be detected and deleted somehow.
Since it will be just a little part of the work in my thesis, I don't want to spend much time in it and already tried classic ways like: (imageJ)
playing with the threshold (resulting in also deleting wanted water particles)
analyse image including the hexagonal patches and later sort out the biggest areas (the hexagonal patches have quite the biggest areas, but you will still have a lot of haxagons)
playing with filters: using gaussian filter on a duplicated image and subtract the copy from the original deletes many patches (in reducing the greyscale value) but also deletes little wanted water particles and so again falsifies the result
a more complicated and time consuming solution would be to use a implemented library in for example matlab or opencv to detect points, that describe the shapes.
but so far I could not find any code that fits my task.
Does anyone of you have created such a code I could use for my task or any other idea?
You can see a lot of hexagonal patches in different depths also.
the little spots with an greater pixel value are the wanted particles!
Image processing is quite an involved area so there are no hard and fast rules.
But if it was me I would 'Mask' the image. This involves either defining what you want to keep or remove as a pixel 'Mask'. You then scan the mask over the image recursively and compare the mask to the image portion selected. You then select or remove the section (depending on your method) if it meets your criterion.
One such example of a criteria would be the spatial and grey-scale error weighted against a likelihood function (eg Chi-squared, square mean error etc.) or a Normal distribution that you define the uncertainty..
Some food for thought
Maybe you can try with the Hough transform:
https://en.wikipedia.org/wiki/Hough_transform
Matlab have an built-in function, hough, wich implements this, but only works for lines. Maybe you can start from that and change it to recognize hexagons.
Given an image such as the CakePHP logo, how can this image be converted back into a PSD with the layers. As a human, I can easily work out how to translate this back to a PSD with layers. I can tell that the background is a circular shape with star edges. So the circular star part is at the back, the cake image is on top of this and the words CakePHP is over all of these two images.
I can use Photoshop/Gimp tools to separate these images into three images and fill in the areas in-between. Then I have three layers.
As a human, it is easy to work out the layering of most logos and images and many images have multiple layers, the CakePHP logo is just one example. Images in the real world also have a layering, there may be a tree layer on top of a background of grass. I need a general way to convert from an image back to the layered representation, ideally a software solution.
In absence of a programmed solution, are there any papers or research which solve this problem or are related to this problem? I am mostly interested in converting human constructed images such as logos or website titles back to layered representation.
I want to point out some benefits of doing this, if you can get this image to a layered representation automatically then it is more easy to modify the image. For example, maybe you want to make the cake smaller, if the computer already layered the cake on top of the red background, you can just scale the cake layer. This allows for layer adjustment of images on websites which do not have layer information already.
As already mentioned, this is a non-trivial task. Ultimately, it can be most
simply phrased as: given an image (or scene if real photo) which is composed of
pixels N, how can those be assigned to M layers?
For segmentation, it's all about the prior knowledge you can bring to bear to
this as to what properties of pixels, and of groups of pixels, give "hints"(and
I use the word advisedly!) as to the layer they belong to.
Consider even the simplest case of using just the colour in your image. I can
generate these 5 "layers" (for hue values 0,24,90, 117 and 118):
With this code (in python/opencv)
import cv
# get orginal image
orig = cv.LoadImage('cakephp.png')
# show original
cv.ShowImage("orig", orig)
# convert to hsv and get just hue
hsv = cv.CreateImage(cv.GetSize(orig), 8, 3)
hue = cv.CreateImage(cv.GetSize(orig), 8, 1)
sat = cv.CreateImage(cv.GetSize(orig), 8, 1)
val = cv.CreateImage(cv.GetSize(orig), 8, 1)
cv.CvtColor(orig, hsv, cv.CV_RGB2HSV)
cv.Split(hsv,hue,sat,val,None)
#cv.ShowImage("hue", hue)
# loop to find how many different hues are present...
query = cv.CreateImage(cv.GetSize(orig), 8, 1)
result = cv.CreateImage(cv.GetSize(orig), 8, 1)
for i in range(0,255):
cv.Set(query,i)
cv.Cmp(query,hue,result,cv.CV_CMP_EQ)
# if a number of pixels are equal - show where they are
if (cv.CountNonZero(result)>1000): # <-what is signficant?
cv.ShowImage(str(i),result)
cv.SaveImage(str(i)+".png",result)
cv.WaitKey(-1)
But, even here we are having to describe what is "significant" in terms of the
number of pixels that belong to a mask (to the extent that we can miss some
colours). We could start to cluster similar colours instead - but at what
density does a cluster become significant? And if it wasn't just pure colour,
but textured instead, how could we describe this? Or, what about inference that
one layer is part of another, or in front of it? Or, ultimately, that some of
the layers seem to be what we humans call "letters" and so should probably be
all related...
A lot of the research in Computer Vision in segmentation generally tries to take
this problem and improve it within a framework that can encode and apply this
prior knowledge effectively...
When you convert from a layer representation to an image you are loosing information. For instance, you don't know the values of the pixels of the background layer behind the cake. Additionally, you don't know for sure which part of the image belong to which layer.
However it may be possible in some cases to recover or estimate at least partially this information. For instance, you could try to separate an image into "layers" using segmentation algorithms. On your exemple, a simple segmentation based on color would probably work.
As for recovering lost pixel values in the background, there is so-called inpainting technics which attempt to estimate missing areas in images based on its surroudings.
Lastly, to recover position and content of texts in images you can rely on Optical Character Recognition (OCR) methods.
Keep in mind that there is no simple algorithm to solve your problem which is more complex than it seems. However, using the above information, you can try to automate at least partially your problem.
I have a web cam that takes a picture every N seconds. This gives me a collection of images of the same scene over time. I want to process that collection of images as they are created to identify events like someone entering into the frame, or something else large happening. I will be comparing images that are adjacent in time and fixed in space - the same scene at different moments of time.
I want a reasonably sophisticated approach. For example, naive approaches fail for outdoor applications. If you count the number of pixels that change, for example, or the percentage of the picture that has a different color or grayscale value, that will give false positive reports every time the sun goes behind a cloud or the wind shakes a tree.
I want to be able to positively detect a truck parking in the scene, for example, while ignoring lighting changes from sun/cloud transitions, etc.
I've done a number of searches, and found a few survey papers (Radke et al, for example) but nothing that actually gives algorithms that I can put into a program I can write.
Use color spectroanalisys, without luminance: when the Sun goes down for a while, you will get similar result, colors does not change (too much).
Don't go for big changes, but quick changes. If the luminance of the image changes -10% during 10 min, it means the usual evening effect. But when the change is -5%, 0, +5% within seconds, its a quick change.
Don't forget to adjust the reference values.
Split the image to smaller regions. Then, when all the regions change same way, you know, it's a global change, like an eclypse or what, but if only one region's parameters are changing, then something happens there.
Use masks to create smart regions. If you're watching a street, filter out the sky, the trees (blown by wind), etc. You may set up different trigger values for different regions. The regions should overlap.
A special case of the region is the line. A line (a narrow region) contains less and more homogeneous pixels than a flat area. Mark, say, a green fence, it's easy to detect wheter someone crosses it, it makes bigger change in the line than in a flat area.
If you can, change the IRL world. Repaint the fence to a strange color to create a color spectrum, which can be identified easier. Paint tags to the floor and wall, which can be OCRed by the program, so you can detect wheter something hides it.
I believe you are looking for Template Matching
Also i would suggest you to look on to Open CV
We had to contend with many of these issues in our interactive installations. It's tough to not get false positives without being able to control some of your environment (sounds like you will have some degree of control). In the end we looked at combining some techniques and we created an open piece of software named OpenTSPS (Open Toolkit for Sensing People in Spaces - http://www.opentsps.com). You can look at the C++ source in github (https://github.com/labatrockwell/openTSPS/).
We use ‘progressive background relearn’ to adjust to the changing background over time. Progressive relearning is particularly useful in variable lighting conditions – e.g. if lighting in a space changes from day to night. This in combination with blob detection works pretty well and the only way we have found to improve is to use 3D cameras like the kinect which cast out IR and measure it.
There are other algorithms that might be relevant, like SURF (http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opencv-part-1/ and http://en.wikipedia.org/wiki/SURF) but I don't think it will help in your situation unless you know exactly the type of thing you are looking for in the image.
Sounds like a fun project. Best of luck.
The problem you are trying to solve is very interesting indeed!
I think that you would need to attack it in parts:
As you already pointed out, a sudden change in illumination can be problematic. This is an indicator that you probably need to achieve some sort of illumination-invariant representation of the images you are trying to analyze.
There are plenty of techniques lying around, one I have found very useful for illumination invariance (applied to face recognition) is DoG filtering (Difference of Gaussians)
The idea is that you first convert the image to gray-scale. Then you generate two blurred versions of this image by applying a gaussian filter, one a little bit more blurry than the first one. (you could use a 1.0 sigma and a 2.0 sigma in a gaussian filter respectively) Then you subtract from the less-blury image, the pixel intensities of the more-blurry image. This operation enhances edges and produces a similar image regardless of strong illumination intensity variations. These steps can be very easily performed using OpenCV (as others have stated). This technique has been applied and documented here.
This paper adds an extra step involving contrast equalization, In my experience this is only needed if you want to obtain "visible" images from the DoG operation (pixel values tend to be very low after the DoG filter and are veiwed as black rectangles onscreen), and performing a histogram equalization is an acceptable substitution if you want to be able to see the effect of the DoG filter.
Once you have illumination-invariant images you could focus on the detection part. If your problem can afford having a static camera that can be trained for a certain amount of time, then you could use a strategy similar to alarm motion detectors. Most of them work with an average thermal image - basically they record the average temperature of the "pixels" of a room view, and trigger an alarm when the heat signature varies greatly from one "frame" to the next. Here you wouldn't be working with temperatures, but with average, light-normalized pixel values. This would allow you to build up with time which areas of the image tend to have movement (e.g. the leaves of a tree in a windy environment), and which areas are fairly stable in the image. Then you could trigger an alarm when a large number of pixles already flagged as stable have a strong variation from one frame to the next one.
If you can't afford training your camera view, then I would suggest you take a look at the TLD tracker of Zdenek Kalal. His research is focused on object tracking with a single frame as training. You could probably use the semistatic view of the camera (with no foreign objects present) as a starting point for the tracker and flag a detection when the TLD tracker (a grid of points where local motion flow is estimated using the Lucas-Kanade algorithm) fails to track a large amount of gridpoints from one frame to the next. This scenario would probably allow even a panning camera to work as the algorithm is very resilient to motion disturbances.
Hope this pointers are of some help. Good Luck and enjoy the journey! =D
Use one of the standard measures like Mean Squared Error, for eg. to find out the difference between two consecutive images. If the MSE is beyond a certain threshold, you know that there is some motion.
Also read about Motion Estimation.
if you know that the image will remain reletivly static I would reccomend:
1) look into neural networks. you can use them to learn what defines someone within the image or what is a non-something in the image.
2) look into motion detection algorithms, they are used all over the place.
3) is you camera capable of thermal imaging? if so it may be worthwile to look for hotspots in the images. There may be existing algorithms to turn your webcam into a thermal imager.
I realize there might be a better place to ask this, but I think you all will have some valuable feedback.
People are asked to draw a shape in black on a white cavas. Then their drawing is added to the running average. I'd like to have the parts that the images mostly have in common be shown, and the parts of the drawing that are unlike most of the other drawings disappear.
My two problems are that I'm using ImageMagick to process the images, which means that I can only create a composite of two images at once. So I have the running total image, and the newest one to add. I cannot get a real average this way.
Secondly, I do not fully understand blending modes particularly when different opacities are involved. I'm not sure which is the best to use.
When you add the first two images you blend them equally. But then when you add the 3rd image to the mix you have to change the weight of each image. The two image composite should be blended at 66.6% while the new image should contribute just 33.3%. For the 4th image you will blend at 75% and 25% respectively. In general, if you have n images in the composite, then the new image should contribute 100/(n+1) percent when added.
As you see, the more images you have the less an individual image affects the composite result.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 5 years ago.
Improve this question
I would like to compare a screenshot of one application (could be a Web page) with a previously taken screenshot to determine whether the application is displaying itself correctly. I don't want an exact match comparison, because the aspect could be slightly different (in the case of a Web app, depending on the browser, some element could be at a slightly different location). It should give a measure of how similar are the screenshots.
Is there a library / tool that already does that? How would you implement it?
This depends entirely on how smart you want the algorithm to be.
For instance, here are some issues:
cropped images vs. an uncropped image
images with a text added vs. another without
mirrored images
The easiest and simplest algorithm I've seen for this is just to do the following steps to each image:
scale to something small, like 64x64 or 32x32, disregard aspect ratio, use a combining scaling algorithm instead of nearest pixel
scale the color ranges so that the darkest is black and lightest is white
rotate and flip the image so that the lighest color is top left, and then top-right is next darker, bottom-left is next darker (as far as possible of course)
Edit A combining scaling algorithm is one that when scaling 10 pixels down to one will do it using a function that takes the color of all those 10 pixels and combines them into one. Can be done with algorithms like averaging, mean-value, or more complex ones like bicubic splines.
Then calculate the mean distance pixel-by-pixel between the two images.
To look up a possible match in a database, store the pixel colors as individual columns in the database, index a bunch of them (but not all, unless you use a very small image), and do a query that uses a range for each pixel value, ie. every image where the pixel in the small image is between -5 and +5 of the image you want to look up.
This is easy to implement, and fairly fast to run, but of course won't handle most advanced differences. For that you need much more advanced algorithms.
The 'classic' way of measuring this is to break the image up into some canonical number of sections (say a 10x10 grid) and then computing a histogram of RGB values inside of each cell and compare corresponding histograms. This type of algorithm is preferred because of both its simplicity and it's invariance to scaling and (small!) translation.
Use a normalised colour histogram. (Read the section on applications here), they are commonly used in image retrieval/matching systems and are a standard way of matching images that is very reliable, relatively fast and very easy to implement.
Essentially a colour histogram will capture the colour distribution of the image. This can then be compared with another image to see if the colour distributions match.
This type of matching is pretty resiliant to scaling (once the histogram is normalised), and rotation/shifting/movement etc.
Avoid pixel-by-pixel comparisons as if the image is rotated/shifted slightly it may lead to a large difference being reported.
Histograms would be straightforward to generate yourself (assuming you can get access to pixel values), but if you don't feel like it, the OpenCV library is a great resource for doing this kind of stuff. Here is a powerpoint presentation that shows you how to create a histogram using OpenCV.
Don't video encoding algorithms like MPEG compute the difference between each frame of a video so they can just encode the delta? You might look into how video encoding algorithms compute those frame differences.
Look at this open source image search application http://www.semanticmetadata.net/lire/. It describes several image similarity algorighms, three of which are from the MPEG-7 standard: ScalableColor, ColorLayout, EdgeHistogram and Auto Color Correlogram.
You could use a pure mathematical approach of O(n^2), but it will be useful only if you are certain that there's no offset or something like that. (Although that if you have a few objects with homogeneous coloring it will still work pretty well.)
Anyway, the idea is the compute the normalized dot-product of the two matrices.
C = sum(Pij*Qij)^2/(sum(Pij^2)*sum(Qij^2)).
This formula is actually the "cosine" of the angle between the matrices (wierd).
The bigger the similarity (lets say Pij=Qij), C will be 1, and if they're completely different, lets say for every i,j Qij = 1 (avoiding zero-division), Pij = 255, then for size nxn, the bigger n will be, the closer to zero we'll get. (By rough calculation: C=1/n^2).
You'll need pattern recognition for that. To determine small differences between two images, Hopfield nets work fairly well and are quite easy to implement. I don't know any available implementations, though.
A ruby solution can be found here
From the readme:
Phashion is a Ruby wrapper around the pHash library, "perceptual hash", which detects duplicate and near duplicate multimedia files
How to measure similarity between two images entirely depends on what you would like to measure, for example: contrast, brightness, modality, noise... and then choose the best suitable similarity measure there is for you. You can choose from MAD (mean absolute difference), MSD (mean squared difference) which are good for measuring brightness...there is also available CR (correlation coefficient) which is good in representing correlation between two images. You could also choose from histogram based similarity measures like SDH (standard deviation of difference image histogram) or multimodality similarity measures like MI (mutual information) or NMI (normalized mutual information).
Because this similarity measures cost much in time, it is advised to scale images down before applying these measures on them.
I wonder (and I'm really just throwing the idea out there to be shot down) if something could be derived by subtracting one image from the other, and then compressing the resulting image as a jpeg of gif, and taking the file size as a measure of similarity.
If you had two identical images, you'd get a white box, which would compress really well. The more the images differed, the more complex it would be to represent, and hence the less compressible.
Probably not an ideal test, and probably much slower than necessary, but it might work as a quick and dirty implementation.
You might look at the code for the open source tool findimagedupes, though it appears to have been written in perl, so I can't say how easy it will be to parse...
Reading the findimagedupes page that I liked, I see that there is a C++ implementation of the same algorithm. Presumably this will be easier to understand.
And it appears you can also use gqview.
Well, not to answer your question directly, but I have seen this happen. Microsoft recently launched a tool called PhotoSynth which does something very similar to determine overlapping areas in a large number of pictures (which could be of different aspect ratios).
I wonder if they have any available libraries or code snippets on their blog.
to expand on Vaibhav's note, hugin is an open-source 'autostitcher' which should have some insight on the problem.
There's software for content-based image retrieval, which does (partially) what you need. All references and explanations are linked from the project site and there's also a short text book (Kindle): LIRE
You can use Siamese Network to see if the two images are similar or dissimilar following this tutorial. This tutorial cluster the similar images whereas you can use L2 distance to measure the similarity of two images.
Beyond Compare has pixel-by-pixel comparison for images, e.g.,
If this is something you will be doing on an occasional basis and doesn't need automating, you can do it in an image editor that supports layers, such as Photoshop or Paint Shop Pro (probably GIMP or Paint.Net too, but I'm not sure about those). Open both screen shots, and put one as a layer on top of the other. Change the layer blending mode to Difference, and everything that's the same between the two will become black. You can move the top layer around to minimize any alignment differences.
Well a really base-level method to use could go through every pixel colour and compare it with the corresponding pixel colour on the second image - but that's a probably a very very slow solution.