I'm trying to program a numerical method in my ti-89, in TI-Basic language, the problem is that when I overwrite the variable inside the loop it doesn't do it, I'm new to this language and I don't know if I'm omitting some detail behind
Item()
prgm
Input "f(x)",a //call the function in text mode
define s(z,t) = a //convert the text into a function
local xa,ya //declare local variables
x->xa //assign values that I already have saved to local variables
y->ya
local i
For i,1,10
s(xa,ya)->xa //evaluate the function, and I have to rewrite the first parameter
EndFor
EndPrgm
I'm not entirely sure what's causing the problem, but I would try using a list to store the data instead if that is all there is. You can rewrite the list and clear it easily. You can store strings in these lists as well. Lists can be edited at all times, which will fix your problem. Although this solution might not be as efficient, it should work. I don't have my calculator with me so I can't test it, sorry :(. These two functions below add things to the list and clear the list.
L1(x,y,z)
ClrList L1
Good luck! TI-Basic can be difficult sometimes
I want to be able to construct a function call from a string in elixir. Is this possible? The equivalent ruby method call would be:
"uppercase".send("u#{:pcase}")
Although the answer by #fhdhsni is perfectly correct, I’d add some nitpicking clarification.
The exact equivalent of Kernel#send from ruby in elixir is impossible, because Kernel#send allows to call private methods on the receiver. In elixir, private functions do not ever exist in the compiled code.
If you meant Kernel#public_send, it might be achieved with Kernel.apply/3, as mentioned by #fhdhsni. The only correction is since the atom table is not garbage collected, and one surely wants to call an indeed existing function, it should be done with String.to_existing_atom/1.
apply(
String,
String.to_existing_atom("u#{:pcase}"),
["uppercase"]
)
Also, one might use macros during the compilation stage to generate respective clauses when the list of functions to call is predictable (when it’s not, the code already smells.)
defmodule Helper do
Enum.each(~w|upcase|a, fn fname ->
def unquote(fname)(param),
do: String.unquote(fname)(param)
# or
# defdelegate unquote(fname)(param), to: String
end)
end
Helper.upcase("uppercase")
#⇒ "UPPERCASE"
In Elixir module and function names are atoms. You can use apply to call them dynamically.
apply(String, String.to_atom("u#{:pcase}"), ["uppercase"]) # "UPPERCASE"
Depending on your use case it might not be a good idea to create atoms dynamically (since the atom table is not garbage collected).
I have just seen this black magic in folly/ManualExecutor.h
TimePoint now_ = now_.min();
After I grep'ed the whole library source code, I haven't seen a definition of the variable now_ anywhere else than here. What's happening here? Is this effectively some sort recursive variable declaration?
That code is most likely equal to this:
TimePoint now_ = TimePoint::min();
That means, min() is a static method, and calling it using an instance is same as calling it like this, the instance is used just for determining the type. No black magic involved, that's just two syntaxes for doing the same thing.
As to why the code in question compiles: now_ is already declared by the left side of the line, so when it's used for initialization on the right side, compiler already knows its type and is able to call the static method. Trying to call non-static method should give an error (see comment of #BenVoigt below).
As demonstrated by the fact that you had to write this question, the syntax in the question is not the most clear. It may be tempting if type name long, and is perhaps justifiable in member variable declarations with initializer (which the question code is). In code inside functions, auto is better way to reduce repetition.
Digging into the code shows that TimePoint is an alias for chrono::steady_clock::time_point, where min() is indeed a static method that returns the minimum allowable duration:
http://en.cppreference.com/w/cpp/chrono/time_point/min
It has been a while since I've used Mathematica, and I looked all throughout the help menu. I think one problem I'm having is that I do not know what exactly to look up. I have a block of code, with things like appending lists and doing basic math, that I want to define as a single variable.
My goal is to loop through a sequence and when needed I wanted to call a block of code that I will be using several times throughout the loop. I am guessing I should just put it all in a loop anyway, but I would like to be able to define it all as one function.
It seems like this should be an easy and straightforward procedure. Am I missing something simple?
This is the basic format for a function definition in Mathematica.
myFunc[par1_,par2_]:=Module[{localVar1,localVar2},
statement1; statement2; returnStatement ]
Your question is not entirely clear, but I interpret that you want something like this:
facRand[] :=
({b, x} = Last#FactorInteger[RandomInteger[1*^12]]; Print[b])
Now every time facRand[] is called a new random integer is factored, global variables b and x are assigned, and the value of b is printed. This could also be done with Function:
Clear[facRand]
facRand =
({b, x} = Last#FactorInteger[RandomInteger[1*^12]]; Print[b]) &
This is also called with facRand[]. This form is standard, and allows addressing or passing the symbol facRand without triggering evaluation.
Something like this (yes, this doesn't deal with some edge cases - that's not the point):
int CountDigits(int num) {
int count = 1;
while (num >= 10) {
count++;
num /= 10;
}
return count;
}
What's your opinion about this? That is, using function arguments as local variables.
Both are placed on the stack, and pretty much identical performance wise, I'm wondering about the best-practices aspects of this.
I feel like an idiot when I add an additional and quite redundant line to that function consisting of int numCopy = num, however it does bug me.
What do you think? Should this be avoided?
As a general rule, I wouldn't use a function parameter as a local processing variable, i.e. I treat function parameters as read-only.
In my mind, intuitively understandabie code is paramount for maintainability, and modifying a function parameter to use as a local processing variable tends to run counter to that goal. I have come to expect that a parameter will have the same value in the middle and bottom of a method as it does at the top. Plus, an aptly-named local processing variable may improve understandability.
Still, as #Stewart says, this rule is more or less important depending on the length and complexity of the function. For short simple functions like the one you show, simply using the parameter itself may be easier to understand than introducing a new local variable (very subjective).
Nevertheless, if I were to write something as simple as countDigits(), I'd tend to use a remainingBalance local processing variable in lieu of modifying the num parameter as part of local processing - just seems clearer to me.
Sometimes, I will modify a local parameter at the beginning of a method to normalize the parameter:
void saveName(String name) {
name = (name != null ? name.trim() : "");
...
}
I rationalize that this is okay because:
a. it is easy to see at the top of the method,
b. the parameter maintains its the original conceptual intent, and
c. the parameter is stable for the rest of the method
Then again, half the time, I'm just as apt to use a local variable anyway, just to get a couple of extra finals in there (okay, that's a bad reason, but I like final):
void saveName(final String name) {
final String normalizedName = (name != null ? name.trim() : "");
...
}
If, 99% of the time, the code leaves function parameters unmodified (i.e. mutating parameters are unintuitive or unexpected for this code base) , then, during that other 1% of the time, dropping a quick comment about a mutating parameter at the top of a long/complex function could be a big boon to understandability:
int CountDigits(int num) {
// num is consumed
int count = 1;
while (num >= 10) {
count++;
num /= 10;
}
return count;
}
P.S. :-)
parameters vs arguments
http://en.wikipedia.org/wiki/Parameter_(computer_science)#Parameters_and_arguments
These two terms are sometimes loosely used interchangeably; in particular, "argument" is sometimes used in place of "parameter". Nevertheless, there is a difference. Properly, parameters appear in procedure definitions; arguments appear in procedure calls.
So,
int foo(int bar)
bar is a parameter.
int x = 5
int y = foo(x)
The value of x is the argument for the bar parameter.
It always feels a little funny to me when I do this, but that's not really a good reason to avoid it.
One reason you might potentially want to avoid it is for debugging purposes. Being able to tell the difference between "scratchpad" variables and the input to the function can be very useful when you're halfway through debugging.
I can't say it's something that comes up very often in my experience - and often you can find that it's worth introducing another variable just for the sake of having a different name, but if the code which is otherwise cleanest ends up changing the value of the variable, then so be it.
One situation where this can come up and be entirely reasonable is where you've got some value meaning "use the default" (typically a null reference in a language like Java or C#). In that case I think it's entirely reasonable to modify the value of the parameter to the "real" default value. This is particularly useful in C# 4 where you can have optional parameters, but the default value has to be a constant:
For example:
public static void WriteText(string file, string text, Encoding encoding = null)
{
// Null means "use the default" which we would document to be UTF-8
encoding = encoding ?? Encoding.UTF8;
// Rest of code here
}
About C and C++:
My opinion is that using the parameter as a local variable of the function is fine because it is a local variable already. Why then not use it as such?
I feel silly too when copying the parameter into a new local variable just to have a modifiable variable to work with.
But I think this is pretty much a personal opinion. Do it as you like. If you feel sill copying the parameter just because of this, it indicates your personality doesn't like it and then you shouldn't do it.
If I don't need a copy of the original value, I don't declare a new variable.
IMO I don't think mutating the parameter values is a bad practice in general,
it depends on how you're going to use it in your code.
My team coding standard recommends against this because it can get out of hand. To my mind for a function like the one you show, it doesn't hurt because everyone can see what is going on. The problem is that with time functions get longer, and they get bug fixes in them. As soon as a function is more than one screen full of code, this starts to get confusing which is why our coding standard bans it.
The compiler ought to be able to get rid of the redundant variable quite easily, so it has no efficiency impact. It is probably just between you and your code reviewer whether this is OK or not.
I would generally not change the parameter value within the function. If at some point later in the function you need to refer to the original value, you still have it. in your simple case, there is no problem, but if you add more code later, you may refer to 'num' without realizing it has been changed.
The code needs to be as self sufficient as possible. What I mean by that is you now have a dependency on what is being passed in as part of your algorithm. If another member of your team decides to change this to a pass by reference then you might have big problems.
The best practice is definitely to copy the inbound parameters if you expect them to be immutable.
I typically don't modify function parameters, unless they're pointers, in which case I might alter the value that's pointed to.
I think the best-practices of this varies by language. For example, in Perl you can localize any variable or even part of a variable to a local scope, so that changing it in that scope will not have any affect outside of it:
sub my_function
{
my ($arg1, $arg2) = #_; # get the local variables off the stack
local $arg1; # changing $arg1 here will not be visible outside this scope
$arg1++;
local $arg2->{key1}; # only the key1 portion of the hashref referenced by $arg2 is localized
$arg2->{key1}->{key2} = 'foo'; # this change is not visible outside the function
}
Occasionally I have been bitten by forgetting to localize a data structure that was passed by reference to a function, that I changed inside the function. Conversely, I have also returned a data structure as a function result that was shared among multiple systems and the caller then proceeded to change the data by mistake, affecting these other systems in a difficult-to-trace problem usually called action at a distance. The best thing to do here would be to make a clone of the data before returning it*, or make it read-only**.
* In Perl, see the function dclone() in the built-in Storable module.
** In Perl, see lock_hash() or lock_hash_ref() in the built-in Hash::Util module).