Elastic Cloud Circuit_breaking_exception - elasticsearch

We recently upgraded our elastic cloud deployment from 6.8.5 to 7.9
After the upgrade we are seeing the following error time to time.
{
"error" : {
"root_cause" : [
{
"type" : "circuit_breaking_exception",
"reason" : "[parent] Data too large, data for [<http_request>] would be [416906520/397.5mb], which is larger than the limit of [408420352/389.5mb], real usage: [416906520/397.5mb], new bytes reserved: [0/0b], usages [request=0/0b, fielddata=32399/31.6kb, in_flight_requests=0/0b, model_inference=0/0b, accounting=4714192/4.4mb]",
"bytes_wanted" : 416906520,
"bytes_limit" : 408420352,
"durability" : "PERMANENT"
}
],
"type" : "circuit_breaking_exception",
"reason" : "[parent] Data too large, data for [<http_request>] would be [416906520/397.5mb], which is larger than the limit of [408420352/389.5mb], real usage: [416906520/397.5mb], new bytes reserved: [0/0b], usages [request=0/0b, fielddata=32399/31.6kb, in_flight_requests=0/0b, model_inference=0/0b, accounting=4714192/4.4mb]",
"bytes_wanted" : 416906520,
"bytes_limit" : 408420352,
"durability" : "PERMANENT"
},
"status" : 429
}
This deployment consists of only one node with 1G memory. We would like to know the cause of this error. Is it due to the upgrade?
Thank you.

First, the circuit breaker is a protection that some request doesn't push your cluster over the limit of what it can handle — this is killing a single request rather than (potentially) the entire cluster. Also note that this HTTP request alone isn't too large, but it trips the parent circuit breaker — so this request on top of everything else would be too much.
The initial circuit breaker was already added in 6.2.0, but was tightened down further in 7.0.0. I assume that's the reason why you are seeing this (more frequently) now.
You could change the indices.breaker.total.limit, but this isn't a magic switch to get more out of your cluster. 1GB of memory might just not be enough for what you are trying to do.

Related

AWS Elasticsearch showing cluster health yellow, how should I fix it?

I am using AWS Elasticsearch. My cluster status is yellow for past 48 hours on the recommendation provided here:
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/aes-handling-errors.html
I've updated my nodes to be 15 data and it has 3 master nodes.
Even though it has more spaces for around 60 Gb in each nodes , it is still in yellow state.
When i executed this command GET /_cluster/allocation/explain
"index" : "***********************************",
"shard" : 4,
"primary" : false,
"current_state" : "unassigned",
"unassigned_info" : {
"reason" : "ALLOCATION_FAILED",
"at" : "2020-10-09T16:19:41.803Z",
"failed_allocation_attempts" : 5,
"details" : "failed shard on node [f6hB7EYOSR-GiJLFXBn01w]: failed recovery, failure RecoveryFailedException[[******************************][4]: Recovery failed from {70c36ff18063566c3a6089f3d696440a}{*******************}{*************}{di}{di_number=39, zone=us-east-1d, distributed_snapshot_deletion_enabled=true} into {**********************}{****************}{*************}{*****}{*******}{di}{distributed_snapshot_deletion_enabled=true, zone=us-east-1d, di_number=39}]; nested: RemoteTransportException[[****************][*********][internal:index/shard/recovery/start_recovery]]; nested: CircuitBreakingException[[parent] Data too large, data for [<transport_request>] would be [1554462628/1.4gb], which is larger than the limit of [1513521152/1.4gb], real usage: [1554460888/1.4gb], new bytes reserved: [1740/1.6kb], usages [request=0/0b, fielddata=621718551/592.9mb, in_flight_requests=73378/71.6kb, accounting=35794764/34.1mb]]; ",
"last_allocation_status" : "no_attempt"
}
This is what it says. How can i resolve this?

Elasticsearch indexing is very slow

I have a Titan database with Cassandra storage backend, and I am trying to create a mixed index based on two property keys.
I am able to register the Index using following commands:
graph=TitanFactory.open(config);
graph.tx().rollback()
m = graph.openManagement();
m.buildIndex("titleBodyMixed", Vertex.class).addKey(m.getPropertyKey("title")).addKey(m.getPropertyKey("body")).buildMixedIndex("search");
m.commit();
m.awaitGraphIndexStatus(graph, 'titleBodyMixed').status(SchemaStatus.REGISTERED).timeout(3, java.time.temporal.ChronoUnit.MINUTES).call();
And when I am checking, the Index is successfully registered after a few seconds. At next step, I try to reindex the database using the following commands:
m = graph.openManagement();
m.updateIndex(m.getGraphIndex('titleBodyMixed'), SchemaAction.REINDEX).get();
However, updateIndex command is not finishing, (After 12 hours).
I have about 300k data entry in the database and each data entry has one Title and one Body to index.
My question is that how can I speed up the indexing?
When I am using top command I see that my CPU is not saturated by indexing processes:
My Titan config file is as bellow:
config =new BaseConfiguration();
config.setProperty("storage.backend","cassandra");
config.setProperty("storage.hostname", "127.0.0.1");
config.setProperty("storage.cassandra.keyspace", "smartgraph");
config.setProperty("index.search.elasticsearch.interface", "NODE");
config.setProperty("index.search.backend", "elasticsearch");
The following is showing elasticsearch service properties:
curl -X GET 'http://localhost:9200'
{
"status" : 200,
"name" : "Ms. Marvel",
"cluster_name" : "elasticsearch",
"version" : {
"number" : "1.7.2",
"build_hash" : "e43676b1385b8125d647f593f7202acbd816e8ec",
"build_timestamp" : "2015-09-14T09:49:53Z",
"build_snapshot" : false,
"lucene_version" : "4.10.4"
},
"tagline" : "You Know, for Search"
}
The idea is, the index reindexing process will not start unless all sessions are closed. You most probably have sessions open with the database. Therefore, the reindex job is never triggered.
With this Gremlin script, you could close all sessions. You should see that the indexing will take place afterwards.
Will that help?

MongoDb's Sharding does not improve application in a Lab setup

I'm currently developing a mobile application powered by a Mongo database, and however everything is working fine right now, we want to add Sharding to be prepared for the future.
In order to test this, we've created a lab environment (running in Hyper-V) to test the various scenario's:
The following servers have been created:
Ubuntu Server 14.04.3 Non-Sharding (Database Server) (256 MB Ram / Limit to 10% CPU).
Ubuntu Server 14.04.3 Sharding (Configuration Server) (256 MB Ram / Limit to 10% CPU).
Ubuntu Server 14.04.3 Sharding (Query Router Server) (256 MB Ram / Limit to 10% CPU).
Ubuntu Server 14.04.3 Sharding (Database Server 01) (256 MB Ram / Limit to 10% CPU).
Ubuntu Server 14.04.3 Sharding (Database Server 02) (256 MB Ram / Limit to 10% CPU).
A small console application have been created in C# to be able to measure the time to perform an insert.
This console application does import 10.000 persons with the following properties:
- Name
- Firstname
- Full Name
- Date Of Birth
- Id
All 10.000 records differs only by '_id', all the other fields are the same for all the records.
It's important to note that every test is exactely run 3 times.
After every test, the database is removed so the system is clean again.
Find the results of the test below:
Insert 10.000 records without sharding
Writing 10.000 records | Non-Sharding environment - Full Disk IO #1: 14 Seconds.
Writing 10.000 records | Non-Sharding environment - Full Disk IO #2: 14 Seconds.
Writing 10.000 records | Non-Sharding environment - Full Disk IO #3: 12 Seconds.
Insert 10.000 records with single database shard
Note: Sharding key has been set to hashed _id field.
See Json below for (partial) sharding information:
shards:
{ "_id" : "shard0000", "host" : "192.168.137.12:27017" }
databases:
{ "_id" : "DemoDatabase", "primary" : "shard0000", "partitioned" : true }
DemoDatabase.persons
shard key: { "_id" : "hashed" }
unique: false
balancing: true
chunks:
shard0000 2
{ "_id" : { "$minKey" : 1 } } -->> { "_id" : NumberLong(0) } on : shard0000 Timestamp(1, 1)
{ "_id" : NumberLong(0) } -->> { "_id" : { "$maxKey" : 1 } } on : shard0000 Timestamp(1, 2)
Results:
Writing 10.000 records | Single Sharding environment - Full Disk IO #1: 1 Minute, 59 Seconds.
Writing 10.000 records | Single Sharding environment - Full Disk IO #2: 1 Minute, 51 Seconds.
Writing 10.000 records | Single Sharding environment - Full Disk IO #3: 1 Minute, 52 Seconds.
Insert 10.000 records with double database shard
Note: Sharding key has been set to hashed _id field.
See Json below for (partial) sharding information:
shards:
{ "_id" : "shard0000", "host" : "192.168.137.12:27017" }
{ "_id" : "shard0001", "host" : "192.168.137.13:27017" }
databases:
{ "_id" : "DemoDatabase", "primary" : "shard0000", "partitioned" : true }
DemoDatabase.persons
shard key: { "_id" : "hashed" }
unique: false
balancing: true
chunks:
shard0000 2
{ "_id" : { "$minKey" : 1 } } -->> { "_id" : NumberLong("-4611686018427387902") } on : shard0000 Timestamp(2, 2)
{ "_id" : NumberLong("-4611686018427387902") } -->> { "_id" : NumberLong(0) } on : shard0000 Timestamp(2, 3)
{ "_id" : NumberLong(0) } -->> { "_id" : NumberLong("4611686018427387902") } on : shard0001 Timestamp(2, 4)
{ "_id" : NumberLong("4611686018427387902") } -->> { "_id" : { "$maxKey" : 1 } } on : shard0001 Timestamp(2, 5)
Results:
Writing 10.000 records | Single Sharding environment - Full Disk IO #1: 49 Seconds.
Writing 10.000 records | Single Sharding environment - Full Disk IO #2: 53 Seconds.
Writing 10.000 records | Single Sharding environment - Full Disk IO #3: 54 Seconds.
According to the tests executed above, sharding does work, the more shards that I add, the better the performance.
However, I don't understand why I'm facing such a huge performance drop when working with shards rather than using a single server.
I need to blazing fast reading and writing s I tought that sharding would be the solution, but it seems that I'm missing something here.
Anyone why can point me in the right direction?
Kind regards
The layers between the routing server and config server, routing server and data nodes add latency.
If you have 1ms ping * 10k inserts, you have an 10 seconds of latency that does not appear in the unsharded setup.
Depending on your configured level of write-concern (if you configured any level of write-acknowledgement), you could have an additional 10 seconds to your benchmarks on the sharded environment due to blocking until an acknowledgement is received from the data node.
If your write-concern is set to acknowledge and you have replica nodes, then you also have to wait for the write to propagate to your replica nodes, adding additional network latency. (You don't appear to have replica nodes though). And depending on your network topology, write-concern could add multiple layers of network latency if you use the default setting to allow chained replication (secondaries sync from other secondaries). https://docs.mongodb.org/manual/tutorial/manage-chained-replication/. If you have additional indexes and write concern, each replica node will have to write that index before returning a write-acknowledgement (it is possible to disable indexes on replica nodes though)
Without sharding and without replication (but with write-acknowledgement), while your inserts would still block on the insert, there is no additional latency due to the network layer.
Hashing the _id field also has a cost that accumulates to maybe a few seconds total for 10k. You can use an _id field with a high degree of randomness to avoid hashing, but I don't think this affects performance much.

Mongodb high CPU - many slow queries on special virtual collection db.$cmd

In diagnosing a high CPU mongodb, we found many slow (6-7 secs) queries. All of those are related to "ns" : "mydb.$cmd".
Slow query entry look like below :
{
"_id" : ObjectId("5571b739f65f7e64bb806362"),
"op" : "command",
"ns" : "mydb.$cmd",
"command" : {
"aggregate" : "MyCollection",
"pipeline" : [
{
"$mergeCursors" : [
{
"host" : "abc:27005",
"id" : NumberLong(82775337156)
}
]
}
]
},
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(12),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(2),
"w" : NumberLong(2680)
}
},
"responseLength" : 12312,
"millis" : 6142,
"execStats" : {},
"ts" : ISODate("2015-06-05T12:35:40.801Z"),
"client" : "1.1.1.1",
"allUsers" : [],
"user" : ""
}
We are not sure what part of code causing these queries. How shall we proceed to find / debug what queries from application causing these $cmd slow queries ?
Those logs are actually the queries issued when running a command against the specified database (mydb in your case). This is therefore just some aggregation command being run against your MongoDB.
If your application is not doing this directly, it would appear (as documented in http://dbattish.tumblr.com/post/108652372056/joins-in-mongodb) that the $mergecursors variant is used from v2.6 to merge queries across shards.
My test shows that MongoDB uses always ~90-100% CPU when it deals with concurrent requests. This beacause I move to MySQL. My app with the thame simple queries work 3x faster with MySQL and i uses much less CPU. I will create an artciel soon with full testing. For now, just look to CPU usage of MongoDB and MariaDB for queries with X=5, 10, 25, 50, 100, 500, 1000 concurrent connections.
siege -b -cX -t1M url
As I realized, high CPU usage doesn't related to hight CPU usage. I mean, even very simple queries with concurrent requests make MongoDB to use 100% CPU.
All tests with 1vCPU and 1Gb memory and connection pool size 10
MongoDB
MySQL
I did many tests with different configurations (4vCPU, 6G Memory) and always MongoDB was use more CPU then MySQL. What you can try with MongoDB is:
Change connection loop size. I hope you don't open connection per query.
Are you using Mongoose? Try with Native Nodejs MYSQL Drivers - it much faster.
I very disappointed from MongodDB for reading data. Not only that MySQL uses much less CPU, it was always at least 3x faster!

Courier Fetch: shards failed

Why do I get these warnings after adding more data to my elasticsearch?
And the warnings are different every time I browse the dashboard.
"Courier Fetch: 30 of 60 shards failed."
More details:
It's a sole node on a CentOS 7.1
/etc/elasticsearch/elasticsearch.yml
index.number_of_shards: 3
index.number_of_replicas: 1
bootstrap.mlockall: true
threadpool.bulk.queue_size: 1000
indices.fielddata.cache.size: 50%
threadpool.index.queue_size: 400
index.refresh_interval: 30s
index.number_of_shards: 5
index.number_of_replicas: 1
/usr/share/elasticsearch/bin/elasticsearch.in.sh
ES_HEAP_SIZE=3G
#I use this Garbage Collector instead of the default one.
JAVA_OPTS="$JAVA_OPTS -XX:+UseG1GC"
cluster status
{
"cluster_name" : "my_cluster",
"status" : "yellow",
"timed_out" : false,
"number_of_nodes" : 1,
"number_of_data_nodes" : 1,
"active_primary_shards" : 61,
"active_shards" : 61,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 61
}
cluster details
{
"cluster_name" : "my_cluster",
"nodes" : {
"some weird number" : {
"name" : "ES 1",
"transport_address" : "inet[localhost/127.0.0.1:9300]",
"host" : "some host",
"ip" : "150.244.58.112",
"version" : "1.4.4",
"build" : "c88f77f",
"http_address" : "inet[localhost/127.0.0.1:9200]",
"process" : {
"refresh_interval_in_millis" : 1000,
"id" : 7854,
"max_file_descriptors" : 65535,
"mlockall" : false
}
}
}
}
I'm curious about the "mlockall" : false because on the yml I did write bootstrap.mlockall: true
logs
lots of lines like:
org.elasticsearch.common.util.concurrent.EsRejectedExecutionException: rejected execution (queue capacity 1000) on org.elasticsearch.search.action.SearchServiceTransportAction$23#a9a34f5
For me tuning the threadpool search queue_size solved the issue. I tried a number of other things and this is the one that solved it.
I added this to my elasticsearch.yml
threadpool.search.queue_size: 10000
and then restarted elasticsearch.
Reasoning... (from the docs)
A node holds several thread pools in order to improve how threads
memory consumption are managed within a node. Many of these pools also
have queues associated with them, which allow pending requests to be
held instead of discarded.
and for search in particular...
For count/search operations. Defaults to fixed with a size of int((#
of available_processors * 3) / 2) + 1, queue_size of 1000.
For more information you can refer to the elasticsearch docs here...
I had trouble finding this information so I hope this helps others!
I got this error when my query was missing a closing quote:
field:"value
In my ElasticSearch logs I see these exceptions:
Caused by: org.elasticsearch.index.query.QueryShardException:
Failed to parse query [field:"value]
...
Caused by: org.apache.lucene.queryparser.classic.ParseException:
Cannot parse 'field:"value': Lexical error at line 1, column 13.
Encountered: <EOF> after : "\"value"
Using Elasticsearch 5.4 thread_pool has an underscore it it.
thread_pool.search.queue_size: 10000
See documentation at Elasticsearch Thread Pool module documentation
This is likely an indication that there's a problem with your cluster's health. Without knowing more about your cluster, there's not much more that can be said.
I agree with #Philip's opinion, But it's necessary to restart elasticsearch at least on Elasticsearch >=1.5.2, because you can dynamically set threadpool.search.queue_size.
curl -XPUT http://your_es:9200/_cluster/settings
{
"transient":{
"threadpool.search.queue_size":10000
}
}
from Elasticsearch >= version 5, its not possible to update cluster settings for thread_pool.search.queue_size using _cluster/settings API. In my case updating ElasticSearch Node yml file is not an option either since if node fails then auto scaling code would bring other ES node with default yml settings.
I have a cluster with 3 nodes and having 400 active primary shards with 7 active threads for queue size of 1000. Increasing number of nodes to 5 with similar config has resolved the issue as queries are getting distributed horizontally to more available nodes.
this will not work on elasticsearch 5.6.
{
"error": {
"root_cause": [
{
"type": "remote_transport_exception",
"reason": "[colmbmiscxx.xx][172.29.xx.xx:9300][cluster:admin/settings/update]"
}
],
"type": "illegal_argument_exception",
"reason": "transient setting [threadpool.search.queue_size], not dynamically updateable"
},
"status": 400
}

Resources