Microservice Aggregator Service BFF - microservices

Let say I have 22 microservices. I developed with docker on local.
Client wants to get product model data which contains 3 different service data and aggregate them.
Should I use aggregator gateway api or SPA get separately from each service. Does Aggregator service couple services ?

These Microservices patterns always come with Trade-offs. Here you need to consider more than just a coupling issue when you are going with Aggregator pattern (Backend for Frontend).
The following are some of the points you need to think about before going with this pattern.
The Latency problem. If you want this implementation to make it better without any latency problem, then your services and aggregator should be in the same location or the same data center. Avoid third party calls from aggregators.
This can introduce a single point of failure. Make sure that you've designed in such a way that the service is highly available.
Implement a resilient design and timeout since this aggregator is calling other services and getting data. If one or more service calls take too long, it should timeout and return a partial set of data. Consider how your application will handle this scenario
Monitoring of your aggregator and it's child service calls. Implement distributed tracing using correlation IDs to track each call.
Ensure the aggregator has the adequate performance to handle the load and can be scaled to meet your anticipated growth.
These are the best practices that I can suggest, You are the best person who can decide based on your system requirements and these points.

There are some compelling advantages to using a BfF service as an orchestration layer that aggregates calls to various backend data services.
It will reduce the complexity in the data access areas of your SPA.
It can also reduce load times.
Over time, your frontend devs will be less likely to get blocked on the backend devs assuming that the BfF is maintained by the frontend devs.
Take a look at this article on Consistency, Coupling, and Complexity at the Edge that goes into more detail on this and proposes some best practices such as GraphQL vs REST.

Related

KDB+/Q: GRPC implementation?

gRPC is a modern open source high performance RPC framework that can
run in any environment. It can efficiently connect services in and
across data centers with pluggable support for load balancing,
tracing, health checking and authentication. It is also applicable in
last mile of distributed computing to connect devices, mobile
applications and browsers to backend services.
I'm finding GRPC is becoming increasingly more pertinent in backend infrastructure, and would've liked to have it in my favorite language/tsdb kdb+/q.
I was surprised to find that kdb+ does not have a grpc implementation. Obviously, the (https://code.kx.com/q/interfaces/protobuf/)
package doesn't support the parsing of rpc's, is there anything quantitatively preventing there being a KDB+ implementation of the rpc requests/services etc. found in grpc?
Why would one not want to implement rpc's (grpc) in kdb+ and would it be a good idea to wrap a c++/c implemetation therin inorder to achieve this functionality.
Thanks for your advice.
Interesting post:
https://zimarev.com/blog/event-sourcing/myth-busting/2020-07-09-overselling-event-sourcing/
outlines event sourcing, which I think might be a better fit for kdb?
What is the main issue with services using RPC calls to exchange information? Well, it’s the high degree of coupling introduced by RPC by its nature. The whole group of services or even the whole system can go down if only one of the services stops working. This approach diminishes the whole idea of independent components.
In my practice I hardly encounter any need to use RPC for inter-service communication. Partially because I often use Event Sourcing, more about it later. But we always use asynchronous communication and exchange information between services using events, even without Event Sourcing.
For example, an order microservice in an e-commerce system needs customer data from the customer microservice. These dependencies between microservices are not ideal. Other microservices can go down and synchronous RESTful requests over https do not scale well due to their blocking nature. If there was a way to completely eliminate dependencies between microservices completely the result would be a more robust architecture with less bottlenecks.
You don’t need Event Sourcing to fix this issue. Event-driven systems are perfectly capable of doing that. Event Sourcing can eliminate some of the associated issues like two-phase commits, but again, not a requirement to remove the temporal coupling from your system.

Micro services using Service fabric where to place controllers

I have a micro-service project with multiple services in .NET Core. When it comes to placing the controllers, there are 2 approaches:
Place the controllers in respective Micro Services, with Startup.cs in each micro-service.
Place all controllers in a separate project and have them call the individual services.
I think the 1st approach will involve less coding effort but the 2nd one separates controllers from actual services using interfaces etc.
Is there a difference in terms of how they are created and managed in Fabric using both approaches.
This is very broad topic and can raise points for discussion because it all depends on preferences, experiences and tech stacks. I will add my two cents, but do not consider it as a rule, just my view for both approaches.
First approach (APIs for each service isolated from each other):
the services will expose their public APIs themselves and you will need to put a service discovery approach in place to enable clients to call each microservice, a simple one is using the reverse proxy to forward the calls using the service name.
Each service and it's APIs scales independently
This approach is better to deploy individual updates without taking down other microservices.
This approach tends to have more code repetition to handle authorization, authentication, and other common aspects, from there you will end up doing shared libraries using on all services.
This approach increase the points of failures, it is good because failures will affect less services, if one API is failing, other services won't be impacted (if the failure does not affect the machine like memory leak or high CPU usage).
The second approach (Single API to forward the calls to right services):
You have a single endpoint and the service discovery will happen in the API, all work will be handled by each services.
The API must scale for everyone even though one service consumes much more resources than others. just the service will scale independently.
This approach, to add or modify api endpoints, you will likely update the API and the service, taking down the API will affect other services.
This approach reduces the code duplication and you can centralize many common aspects like Authorization, request throttling and so on.
This approach has less points of failures, if one microservices goes down, and a good amount of calls depend on this service, the API will handle more connection and pending requests, this will affect other services and performance. If it goes down, every services will be unavailable. Compared to the first approach, the first approach will offloaded the resilience to the proxy or to the client.
In summary,
both approaches will have a similar effort, the difference is that the effort will be split into different areas, you should evaluate both and consider which one to maintain. Don't consider just code in the comparison, because code has very little impact on the overall solution when compared with other aspects like release, monitoring, logging, security, performance.
In our current project we have a public facing API. We have several individual microservice projects for each domain. Being individual allows us to scale according to the resources each microservice use. For example we have an imaging service that consumes a lot of resources, so scaling this is easier. You also have the chance to deploy them individually and if any service fails it doesn't break the whole application.
In front of all the microservices we have an API Gateway that handles all the authentication, throttles, versioning, health checks, metrics, logging etc. We have interfaces for each microservice, and keep the Request and Response models seperately for each context. There is no business logic on this layer, and you also have the chance to aggregate responses where several services need to be called.
If you would like to ask anything about this structure please feel free to ask.

Should a microservice take care of this or the api gateway?

I am building out a microservice architecture and kinda confused on one part. I am using Kafka as a message broker system to communicate within my services. A perfect example would be Uber's API for request estimation. It returns duration, distance, price, etc. I would assume they have a microservice for each of those, i.e. service for pricing, service for duration/distance, service for drivers, etc. My question is when hitting the endpoint /requests/estimate does the requests microservice make rest calls to the other microservices to retrieve data for the duration, distance, etc? or does the API Gateway take care of that?
I say it depends on the use case. If service A needs to know what service B knows, then it is perfectly sane for service A to make a REST call to service B. But if the combined knowledge for A and B is only needed in your gateway then the gateway can combine the results.
Both are perfectly valid ways of doing it, but I would go the Estimate microservice way to avoid putting too much logic in the API Gateway.
Maybe in the future your estimation calculation will change, and it wouldn't make much sense to me to update the gateway every time.
In practice, not all gateway APIs support multiple calls and aggregation. In the micro service architecture, there is a common pattern ("API Composition", "Composition Patterns" in particular "Aggregator Pattern"), the idea of which is that you need to make a separate service that will contain the business logic of multiple calls and aggregation.

Does Service Discovery microservice break idea of loose coupling?

As a mechanism to connect microservices together and make them work it is usually suggested to use APIs and Service Discovery. But they usually work as their own microservices, but these ones should apparently be "hard-coded" into others, as every microservice is supposed to register with them and query for other microservices' locations. Doesn't this break the idea of loose coupling, since a loss of a discovery service implies others being unable to communicate?
Pretty much yes. If one microservice "knows" about another microservice - it means that they are highly coupled. It doesn't matter where specifically this knowledge about other service is coming from: hardcoded, config file or maybe some service discovery, it still leads to high coupling.
What's important to understand is that many microservice evangelists are just preaching about how to build monolith apps on top of Web APIs. Some of them probably think that the more buzz words they use - the better ... not quite sure why this happens. It is probably easier to fake a language and become an "expert" by using buzzword salad instead of really building fault tolerant and horizontally scalable app.
But there is another way to look at service discovery: when it is used by service clients like SPA application or an API Gateway it may be very useful. Clients and gateways should know about service APIs, otherwise, the whole thing doesn't make sense. But they can use a registry to make it more flexible/dynamic.
So, to summarize:
if services are using discovery to get more information about each other - this is probably a bad thing and design flaw (pretty sure there are corner cases where this may be a valid scenario, please post a comment if you know some)
if discovery is used by other parts of the app, like SPA or API Gateway, this may be useful, but not necessarily it always is.
PS: to avoid high coupling, consider reading series of articles by Jeppe Cramon that illustrate the problem and possible solutions very nicely.
In a distributed system, you will always have some amount of coupling, what you want to do is to reduce all aspects of coupling to a minimum.
I'd argue that is does matter how you design your service location. if your code knows of the other service i.e. OrderService.Send(SubmitOrderMessage); (where 'OrderService' is an instance of the other service's proxy)
as opposed to transportAgent.Send(SubmitOrderMessage); (where 'transportAgent' is an instance of the transport's proxy i.e. the queuing service/agent and the actual address of the queue can be in your config), this reduces the coupling and your business logic code (Service) and delegates the routing to your infrastructure.
Make Sense?
Each microservice is expected to be functionally independent. For interacting with other microservices, it should rely on rest api calls only. Service Discovery plays a role to keep the services fairly loose coupled with each other. Also due to dynamic nature of the service urls, the hard dependencies are removed. Hope this helps
Reduced coupling or fairly loose coupling still has one thing in common; coupling. In my opinion, coupling to any degree will always create rigid communication patterns that are difficult to maintain and difficult to troubleshoot as a platform grows into a large distributed platform. Isn't the idea behind microservices to allow consumers to engage in "Permissionless innovation?" I would suggest that this is only possible by decomposing to microservices that have high cohesion and low coupling and then let the consumer decide how to route, orchestrate or aggregate.

Splitting monolith into microservices

I have an existing web service that supports ordering and it has multiple operations (approximately 20). This is a single webservice that support the ordering function. It interacts with multiple other services to provide ordering capability.
Since there is a lot of business functionality within this app and it is supported by a 10 member team , I believe it is a monolith (though I assume there is no hard and fast rule to define what a monolith is).
We are planning to get the application deployed in cloud foundry environment and we are planning to split the app into 2-3 microservices , primarily to enable them scale independently.
The first few apis which enable searching for a product typically have more number of hits whereas the api that support actual order submission receives less that 5% of the hits. So the product search api should have significantly larger number of instances as compared to order submission api.
Though I am not sure if we could split is based on sub-domains (which I have read should be the basis) , we are thinking of splitting them based on the call sequence as explained earlier.
I have also read that microservices should be choreographed and not orchestrated. However in order to ensure our existing consumers are not impacted , I believe we should expose a api layer which would orchestrate the calls to these microservices. Is providing an api gateway , the normal approach that is followed to ensure consumers do not end up calling multiple microservices and also provides a layer of abstraction?
This seems to be orchestration more than choreography - though I am not hung up on the theoretical aspects , I would like to understand the different solutions that are pursued for this problem statement in an enterprise world.
The Benefits of Microservices
Deploy & Scale Independently
Easier to 'Reason About'
Separation of Concerns
Single Responsibility
(Micro)Service-Oriented Architecture
I would suggest splitting your services based on domain. This is a logical and efficient approach which makes it an easy starting point. Your monolithic package structure may already be organized in this manner, which simplifies the refactoring even more.
API Gateway
The typical Spring Cloud approach for this would be to use a Zuul Proxy on the edge of your network which receives the requests from your clients (web, mobile, etc.) and routes them to the microservices located behind your firewall. The client only interfaces with a single domain, and it handles CORS out of the box.
Resources:
API Gateway Pattern
Routing and Filtering

Resources