Delete consecutive same characters in a sequence using stack - data-structures

Delete consecutive same characters in a sequence using stack. Ask the user to enter a series of characters until the user enters ‘F’ or ‘f’. Now the task is to check if any two similar characters come together then they destroy each other. Print the new sequence after this pairwise destruction.
Pseudo code
n = input ()
if stack is empty {
push n
}
else {
m = pop from stack
if m != n {
push m
push n
}
}
Can this pseudo code work? I want to implement it without using sets, hashmaps, vectors, etc.

Related

How to instruct longest palindrome from a list of numbers?

I am trying to solve a question which says that we need to write a function in which given a list of numbers, we need to find the longest palindrome that we can from given only the numbers in the list.
For eg:
If the given list is : [3,47,6,6,5,6,15,22,1,6,15]
The longest palindrome that we can return is one of length 9, such as [6,15,6,3,47,3,6,15,6].
Additionally, we have the following constraints:
One can only use an array queue, array stack, and a chaining hashmap, and the list we are supposed to return, and the function must run in linear time. And we can use only constant additional space.
My approach was the following:
Since a palindrome can be formed if have an even number of certain characters, we can iterate over all the elements in the list, and store in a chaining hash map, the number of times each number appears in the list. This should take O(N) time since each lookup in the chaining hash map takes constant time, and iterating over the list takes linear time.
Then we can iterate over all the numbers in the chaining hash map, to see which numbers appear an even number of times, and accordingly, just make a palindrome. In the worst case, this will take a O(n) linear time.
Now there are two things I am wondering:
How should I make the actual palindrome? Like how do I use the data structures that I am being allowed to use in order to make a palindrome? I am thinking that since the queue is a LIFO data structure, for each number that occurs an even number of times, we add it once to the queue and once to the stack, and so on and so forth. And finally, we can just dequeue everything from the queue, and pop once from the stack, and then add it to the list!
It seems that with my approach, it is taking me two linear runs to solve the question. I am wondering if there is a faster way to do this.
Any and all help will be appreciated. Thanks!
It is not possible to get a better algorithm than one that is O(n), as every number in the input has to be inspected, as it might provide a possibility for a longer palindrome. If indeed the output must be a longest palindrome itself (and not only its length), then producing that output itself represents O(n).
You have also omitted one additional thing you have to do in your algorithm: there can be one value in the final palindrome that occurs only once (in the centre). So whenever you encounter a value that occurs an odd number of times, you may reserve one occurrence of that value for putting in the middle of an odd-length palindrome. The even remainder of the occurrences can be used as usual.
As to your questions:
How should I make the actual palindrome?
There are many ways to do it. But don't forget that if you have an even number of occurrences, you should use all those occurrences, not just two. So add half of them to the queue and half of them to the stack. When the frequency is odd, then still do the same (rounded down), and log the number also as a potential centre value.
When you have done this for all values, then dump the queue and stack together in the result list as you suggested, but don't forget to put the centre value in between the two, if you identified such a centre value (i.e. when not all occurrences were even).
It seems that with my approach, it is taking me two linear runs to solve the question.
You cannot do this better than with a linear time complexity. You can save a bit of time if you use the stack also for the result, and just dump the queue unto the stack (after potentially pushing the centre value).
I've got a solution when its palindrome only for the number and not the digit.
for the input: [51,15]
we will return [15] || [51] and not [51,15] =>(5,1,1,5);
feature more your example as a problem 3 doesn't appear twice(and appears in the answer)
or maybe I didn't understand the question.
public static int[] polidrom(int [] numbers){
HashMap<Integer/*the numbere*/,Integer/*how many time appeared*/> hash = new HashMap<>();
boolean middleFree= false;
int middleNumber = 0;
int space = 0;
Stack<Integer> stack = new Stack<>();
for (Integer num:numbers) {//count how mant times each digit appears
if(hash.containsKey(num)){hash.replace(num,1+hash.get(num));}
else{hash.put(num,1);}
}
for (Integer num:hash.keySet()) {//how many times i can use pairs
int original =hash.get(num);
int insert = (int)Math.floor(hash.get(num)/2);
if(hash.get(num) % 2 !=0){middleNumber = num;middleFree = true;}//as no copy
hash.replace(num,insert);
if(insert != 0){
for(int i =0; i < original;i++){
stack.push(num);
}
}
}
space = stack.size();
if(space == numbers.length){ space--;};//all the numbers are been used
int [] answer = new int[space+1];//the middle dont have to have an pair
int startPointer =0 , endPointer= space;
while (!stack.isEmpty()){
int num = stack.pop();
answer[startPointer] = num;
answer[endPointer] = num;
startPointer++;
endPointer--;
}
if (middleFree){answer[answer.length/2] = middleNumber;}
return answer;
}
space O(n) => {stack , hashMap , answer Array};
complexity: O(n)
You can skip the part where I used the stack and build the answer array in the same loop.
and I can't think of a way where you will not iterate at least twice;
Hope I've helped

Iterative, bottom up, divide and conquer algorithm

I was reading through this LeetCode article on a common algorithm problem, "Longest Common Prefix." They show a few different approaches, but my question pertains to just "Divide and Conquer." Its example shows the typical recursive top down approach you often see in books and blogs everywhere.
Looking at this got me thinking I should be able to do this "iteratively" and "bottom up" as well. Something like a bottom up merge sort approach. So here's where I ended up:
// type "Stack", function "prefix", and "min" implementations are not shown for brevity.
// Just assume they're defined somewhere and they work correctly.
//
// "prefix" function accepts two strings and returns a string
// Examples:
// prefix("abcd", "ab") returns "ab"
// prefix("abcd", "efgh") returns ""
// ... you get the idea.
//
// "min" does exactly what you'd expect. Its arguments are both type int.
func lcpDAndC(a []string) string {
n := len(a)
if n == 0 {
return ""
}
var (
stack Stack
p, q string
)
for lo := 0; lo < n; lo += 2 {
hi := min(lo+1, n-1)
stack = stack.Push(prefix(a[lo], a[hi])
}
for stack.Len() > 1 {
p, q = stack.Pop2()
stack.Push(prefix(p, q))
}
return stack.Pop1()
}
So my question is: Is this still considered "bottom up" and "divide and conquer?" I think it's safe to assume starting at the leaves right away (the bottom up part) can just be a matter of working on two elements at a time as it passes through the array once ("divide" ... but also "conquer?"). The stack here is of course playing an equal role as the call stack would in the recursive approach. Although, a queue would work just as well, which is another reason I'm thinking I've gone off the deep end here.
If this isn't a proper application of "bottom up" and "divide and conquer," does this at least apply some other theory that I don't know of?
The recursion used in the article is Top Down since they break larger cases into smaller ones and then combine the result of the smaller ones.
In recursion function calls are pushed on top of one another onto the function call stack. They are popped off either
(1) Once the base case is reached
or
(2) Results of function calls above them in the stack has been computed and it's their turn now.
Your code does not do a Bottom Up Recursion and is also not D&C,
Consider this case:-
["care","car","cat","cater","click","clang","core","coral"]
Stack Initially:-
cor
cl
cat
car
While Loop Iteration #1:
c
cat
car
While Loop Iteration #2:
c
car
While Loop Iteration #3:
c
Your while loop combines the elements in a serial fashion and does not use the property of D&C. If you change lo+=2 in the for loop to lo+=1 then your code is the same as Approach 1: Horizontal scanning.
Using a Queue, however, would make the code a Bottom-Up Recursion.
Notice how every time two elements are popped they represent two mutually exclusive halves that would've been found in the recursion tree of a Top Down approach as well.
Consider this case:-
["care","car","cat","cater","click","clang","core","coral"]
Queue Initially:-
cor
cl
cat
car
While Loop Iteration #1:
ca
cor
cl
While Loop Iteration #2:
c
ca
While Loop Iteration #3:
c

Efficient Algorithm to find combination of numbers for an answer [duplicate]

I'm working on a homework problem that asks me this:
Tiven a finite set of numbers, and a target number, find if the set can be used to calculate the target number using basic math operations (add, sub, mult, div) and using each number in the set exactly once (so I need to exhaust the set). This has to be done with recursion.
So, for example, if I have the set
{1, 2, 3, 4}
and target 10, then I could get to it by using
((3 * 4) - 2)/1 = 10.
I'm trying to phrase the algorithm in pseudo-code, but so far haven't gotten too far. I'm thinking graphs are the way to go, but would definitely appreciate help on this. thanks.
This isn't meant to be the fastest solution, but rather an instructive one.
It recursively generates all equations in postfix notation
It also provides a translation from postfix to infix notation
There is no actual arithmetic calculation done, so you have to implement that on your own
Be careful about division by zero
With 4 operands, 4 possible operators, it generates all 7680 = 5 * 4! * 4^3
possible expressions.
5 is Catalan(3). Catalan(N) is the number of ways to paranthesize N+1 operands.
4! because the 4 operands are permutable
4^3 because the 3 operators each have 4 choice
This definitely does not scale well, as the number of expressions for N operands is [1, 8, 192, 7680, 430080, 30965760, 2724986880, ...].
In general, if you have n+1 operands, and must insert n operators chosen from k possibilities, then there are (2n)!/n! k^n possible equations.
Good luck!
import java.util.*;
public class Expressions {
static String operators = "+-/*";
static String translate(String postfix) {
Stack<String> expr = new Stack<String>();
Scanner sc = new Scanner(postfix);
while (sc.hasNext()) {
String t = sc.next();
if (operators.indexOf(t) == -1) {
expr.push(t);
} else {
expr.push("(" + expr.pop() + t + expr.pop() + ")");
}
}
return expr.pop();
}
static void brute(Integer[] numbers, int stackHeight, String eq) {
if (stackHeight >= 2) {
for (char op : operators.toCharArray()) {
brute(numbers, stackHeight - 1, eq + " " + op);
}
}
boolean allUsedUp = true;
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] != null) {
allUsedUp = false;
Integer n = numbers[i];
numbers[i] = null;
brute(numbers, stackHeight + 1, eq + " " + n);
numbers[i] = n;
}
}
if (allUsedUp && stackHeight == 1) {
System.out.println(eq + " === " + translate(eq));
}
}
static void expression(Integer... numbers) {
brute(numbers, 0, "");
}
public static void main(String args[]) {
expression(1, 2, 3, 4);
}
}
Before thinking about how to solve the problem (like with graphs), it really helps to just look at the problem. If you find yourself stuck and can't seem to come up with any pseudo-code, then most likely there is something that is holding you back; Some other question or concern that hasn't been addressed yet. An example 'sticky' question in this case might be, "What exactly is recursive about this problem?"
Before you read the next paragraph, try to answer this question first. If you knew what was recursive about the problem, then writing a recursive method to solve it might not be very difficult.
You want to know if some expression that uses a set of numbers (each number used only once) gives you a target value. There are four binary operations, each with an inverse. So, in other words, you want to know if the first number operated with some expression of the other numbers gives you the target. Well, in other words, you want to know if some expression of the 'other' numbers is [...]. If not, then using the first operation with the first number doesn't really give you what you need, so try the other ops. If they don't work, then maybe it just wasn't meant to be.
Edit: I thought of this for an infix expression of four operators without parenthesis, since a comment on the original question said that parenthesis were added for the sake of an example (for clarity?) and the use of parenthesis was not explicitly stated.
Well, you didn't mention efficiency so I'm going to post a really brute force solution and let you optimize it if you want to. Since you can have parantheses, it's easy to brute force it using Reverse Polish Notation:
First of all, if your set has n numbers, you must use exactly n - 1 operators. So your solution will be given by a sequence of 2n - 1 symbols from {{your given set}, {*, /, +, -}}
st = a stack of length 2n - 1
n = numbers in your set
a = your set, to which you add *, /, +, -
v[i] = 1 if the NUMBER i has been used before, 0 otherwise
void go(int k)
{
if ( k > 2n - 1 )
{
// eval st as described on Wikipedia.
// Careful though, it might not be valid, so you'll have to check that it is
// if it evals to your target value great, you can build your target from the given numbers. Otherwise, go on.
return;
}
for ( each symbol x in a )
if ( x isn't a number or x is a number but v[x] isn't 1 )
{
st[k] = x;
if ( x is a number )
v[x] = 1;
go(k + 1);
}
}
Generally speaking, when you need to do something recursively it helps to start from the "bottom" and think your way up.
Consider: You have a set S of n numbers {a,b,c,...}, and a set of four operations {+,-,*,/}. Let's call your recursive function that operates on the set F(S)
If n is 1, then F(S) will just be that number.
If n is 2, F(S) can be eight things:
pick your left-hand number from S (2 choices)
then pick an operation to apply (4 choices)
your right-hand number will be whatever is left in the set
Now, you can generalize from the n=2 case:
Pick a number x from S to be the left-hand operand (n choices)
Pick an operation to apply
your right hand number will be F(S-x)
I'll let you take it from here. :)
edit: Mark poses a valid criticism; the above method won't get absolutely everything. To fix that problem, you need to think about it in a slightly different way:
At each step, you first pick an operation (4 choices), and then
partition S into two sets, for the left and right hand operands,
and recursively apply F to both partitions
Finding all partitions of a set into 2 parts isn't trivial itself, though.
Your best clue about how to approach this problem is the fact that your teacher/professor wants you to use recursion. That is, this isn't a math problem - it is a search problem.
Not to give too much away (it is homework after all), but you have to spawn a call to the recursive function using an operator, a number and a list containing the remaining numbers. The recursive function will extract a number from the list and, using the operation passed in, combine it with the number passed in (which is your running total). Take the running total and call yourself again with the remaining items on the list (you'll have to iterate the list within the call but the sequence of calls is depth-first). Do this once for each of the four operators unless Success has been achieved by a previous leg of the search.
I updated this to use a list instead of a stack
When the result of the operation is your target number and your list is empty, then you have successfully found the set of operations (those that traced the path to the successful leaf) - set the Success flag and unwind. Note that the operators aren't on a list nor are they in the call: the function itself always iterates over all four. Your mechanism for "unwinding" the operator sequence from the successful leaf to get the sequence is to return the current operator and number prepended to the value returned by recursive call (only one of which will be successful since you stop at success - that, obviously, is the one to use). If none are successful, then what you return isn't important anyhow.
Update This is much harder when you have to consider expressions like the one that Daniel posted. You have combinatorics on the numbers and the groupings (numbers due to the fact that / and - are order sensitive even without grouping and grouping because it changes precedence). Then, of course, you also have the combinatorics of the operations. It is harder to manage the differences between (4 + 3) * 2 and 4 + (3 * 2) because grouping doesn't recurse like operators or numbers (which you can just iterate over in a breadth-first manner while making your (depth-first) recursive calls).
Here's some Python code to get you started: it just prints all the possible expressions, without worrying too much about redundancy. You'd need to modify it to evaluate expressions and compare to the target number, rather than simply printing them.
The basic idea is: given a set S of numbers, partition S into two subsets left and right in all possible ways (where we don't care about the order or the elements in left and right), such that left and right are both nonempty. Now for each of these partitions, find all ways of combining the elements in left (recursively!), and similarly for right, and combine the two resulting values with all possible operators. The recursion bottoms out when a set has just one element, in which case there's only one value possible.
Even if you don't know Python, the expressions function should be reasonably easy to follow; the splittings function contains some Python oddities, but all it does is to find all the partitions of the list l into left and right pieces.
def splittings(l):
n = len(l)
for i in xrange(2**n):
left = [e for b, e in enumerate(l) if i & 2**b]
right = [e for b, e in enumerate(l) if not i & 2**b]
yield left, right
def expressions(l):
if len(l) == 1:
yield l[0]
else:
for left, right in splittings(l):
if not left or not right:
continue
for el in expressions(left):
for er in expressions(right):
for operator in '+-*/':
yield '(' + el + operator + er + ')'
for x in expressions('1234'):
print x
pusedo code:
Works(list, target)
for n in list
tmp=list.remove(n)
return Works(tmp,target+n) or Works(tmp,target-n) or Works(tmp, n-target) or ...
then you just have to put the base case in. I think I gave away to much.

Algorithm to match roots between two string lists

The problem:
I am using a watch service to monitor a directory for input so I can fire an event once I have two (semi)matching input files. The problem I have is: If I have two lists, each containing strings that may differ how can I find matching roots between lists as they occur.
The filename structure looks like this:
<companyname>-<ordernum><postfix>.csv
so for example:
list1 could contain:
mycomp-1234.csv
mycomp-4567.csv
newcomp-7891.csv
oldcomp-3376.csv
list2 could contain:
mycomp-2232_items.csv
newcomp-13123_items.csv
oldcomp-87078777_items.csv
mycomp-1234_items.csv
I want to find, and fire the event as soon as a match occurs between lists. A match being any filename, less the suffix. i.e. mycomp-1234 would return a match for both lists.
What I'm looking for
I'm looking to find the most efficient manner to do this. I know I can iterate over each list comparing values, but I am sure there is a more efficient way to do this.
I do not need code, I'd rather learn this by myself, so a push in the right direction is perfect. If your fingers make you write code, please write pseudo code so it can benefit as many languages as possible.
And no, this is not homework. For those of you intensely curious folk this is to perform EDI transformations from csv to X12 EDI files.
Sort the lists alphabetically then compare the values and step forward in the list that has the smaller value. If the lists have any elements in common the values will match.
A side by side comparison of two sorted lists.
Collections.sort(list1);
Collections.sort(list2);
int i1 = 0;
int i2 = 0;
while (i1 < list1.size() && i2 < list.size()) {
String name1 = list1.get(i1);
String name2 = list2.get(i2);
String[] parts1 = name1.split("[-_.]");
String[] parts2 = name2.split("[-_.]");
if (parts1.length < 3) {
++i1;
continue;
}
if (parts2.length < 3) {
++i2;
continue;
}
int cmp = parts1[0].compareTo(parts1[0]);
if (cmp == 0) {
cmp = parts1[1].compareTo(parts1[1]);
}
if (cmp < 0) {
++i1;
continue
}
if (cmp > 0) {
++i2;
continue
}
// Found match:
...
++i1;
++i2;
}
An online method: Maintain a binary search tree containing all the current filenames. Use as keys the relevant bits of filenames. For example, the key for either newcomp-7891.csv or newcomp-7891_items is newcomp-7891. Each time the watch service reports a directory event, you can delete disused names and can attempt to add new names to the tree. If a key already is in the tree, fire your desired event.
A hash table can be used similarly, if the hash implementation supports deletion of keys when filenames are removed.
The question asks for “the most efficient manner to do this”. Note that this method is far more efficient than sorting the lists from scratch each time a directory event occurs. At an event with k additions and deletions, it uses O(k·lg n) time if the dataset has n entries, so over a period of time where the average tree size is n and m additions/deletions occur, in u directory events, it will do O(m·lg n) work. By contrast, the sort-each-time methods suggested in other answers will do O(u·n·lg n) work, which is much more.

Computing target number from numbers in a set

I'm working on a homework problem that asks me this:
Tiven a finite set of numbers, and a target number, find if the set can be used to calculate the target number using basic math operations (add, sub, mult, div) and using each number in the set exactly once (so I need to exhaust the set). This has to be done with recursion.
So, for example, if I have the set
{1, 2, 3, 4}
and target 10, then I could get to it by using
((3 * 4) - 2)/1 = 10.
I'm trying to phrase the algorithm in pseudo-code, but so far haven't gotten too far. I'm thinking graphs are the way to go, but would definitely appreciate help on this. thanks.
This isn't meant to be the fastest solution, but rather an instructive one.
It recursively generates all equations in postfix notation
It also provides a translation from postfix to infix notation
There is no actual arithmetic calculation done, so you have to implement that on your own
Be careful about division by zero
With 4 operands, 4 possible operators, it generates all 7680 = 5 * 4! * 4^3
possible expressions.
5 is Catalan(3). Catalan(N) is the number of ways to paranthesize N+1 operands.
4! because the 4 operands are permutable
4^3 because the 3 operators each have 4 choice
This definitely does not scale well, as the number of expressions for N operands is [1, 8, 192, 7680, 430080, 30965760, 2724986880, ...].
In general, if you have n+1 operands, and must insert n operators chosen from k possibilities, then there are (2n)!/n! k^n possible equations.
Good luck!
import java.util.*;
public class Expressions {
static String operators = "+-/*";
static String translate(String postfix) {
Stack<String> expr = new Stack<String>();
Scanner sc = new Scanner(postfix);
while (sc.hasNext()) {
String t = sc.next();
if (operators.indexOf(t) == -1) {
expr.push(t);
} else {
expr.push("(" + expr.pop() + t + expr.pop() + ")");
}
}
return expr.pop();
}
static void brute(Integer[] numbers, int stackHeight, String eq) {
if (stackHeight >= 2) {
for (char op : operators.toCharArray()) {
brute(numbers, stackHeight - 1, eq + " " + op);
}
}
boolean allUsedUp = true;
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] != null) {
allUsedUp = false;
Integer n = numbers[i];
numbers[i] = null;
brute(numbers, stackHeight + 1, eq + " " + n);
numbers[i] = n;
}
}
if (allUsedUp && stackHeight == 1) {
System.out.println(eq + " === " + translate(eq));
}
}
static void expression(Integer... numbers) {
brute(numbers, 0, "");
}
public static void main(String args[]) {
expression(1, 2, 3, 4);
}
}
Before thinking about how to solve the problem (like with graphs), it really helps to just look at the problem. If you find yourself stuck and can't seem to come up with any pseudo-code, then most likely there is something that is holding you back; Some other question or concern that hasn't been addressed yet. An example 'sticky' question in this case might be, "What exactly is recursive about this problem?"
Before you read the next paragraph, try to answer this question first. If you knew what was recursive about the problem, then writing a recursive method to solve it might not be very difficult.
You want to know if some expression that uses a set of numbers (each number used only once) gives you a target value. There are four binary operations, each with an inverse. So, in other words, you want to know if the first number operated with some expression of the other numbers gives you the target. Well, in other words, you want to know if some expression of the 'other' numbers is [...]. If not, then using the first operation with the first number doesn't really give you what you need, so try the other ops. If they don't work, then maybe it just wasn't meant to be.
Edit: I thought of this for an infix expression of four operators without parenthesis, since a comment on the original question said that parenthesis were added for the sake of an example (for clarity?) and the use of parenthesis was not explicitly stated.
Well, you didn't mention efficiency so I'm going to post a really brute force solution and let you optimize it if you want to. Since you can have parantheses, it's easy to brute force it using Reverse Polish Notation:
First of all, if your set has n numbers, you must use exactly n - 1 operators. So your solution will be given by a sequence of 2n - 1 symbols from {{your given set}, {*, /, +, -}}
st = a stack of length 2n - 1
n = numbers in your set
a = your set, to which you add *, /, +, -
v[i] = 1 if the NUMBER i has been used before, 0 otherwise
void go(int k)
{
if ( k > 2n - 1 )
{
// eval st as described on Wikipedia.
// Careful though, it might not be valid, so you'll have to check that it is
// if it evals to your target value great, you can build your target from the given numbers. Otherwise, go on.
return;
}
for ( each symbol x in a )
if ( x isn't a number or x is a number but v[x] isn't 1 )
{
st[k] = x;
if ( x is a number )
v[x] = 1;
go(k + 1);
}
}
Generally speaking, when you need to do something recursively it helps to start from the "bottom" and think your way up.
Consider: You have a set S of n numbers {a,b,c,...}, and a set of four operations {+,-,*,/}. Let's call your recursive function that operates on the set F(S)
If n is 1, then F(S) will just be that number.
If n is 2, F(S) can be eight things:
pick your left-hand number from S (2 choices)
then pick an operation to apply (4 choices)
your right-hand number will be whatever is left in the set
Now, you can generalize from the n=2 case:
Pick a number x from S to be the left-hand operand (n choices)
Pick an operation to apply
your right hand number will be F(S-x)
I'll let you take it from here. :)
edit: Mark poses a valid criticism; the above method won't get absolutely everything. To fix that problem, you need to think about it in a slightly different way:
At each step, you first pick an operation (4 choices), and then
partition S into two sets, for the left and right hand operands,
and recursively apply F to both partitions
Finding all partitions of a set into 2 parts isn't trivial itself, though.
Your best clue about how to approach this problem is the fact that your teacher/professor wants you to use recursion. That is, this isn't a math problem - it is a search problem.
Not to give too much away (it is homework after all), but you have to spawn a call to the recursive function using an operator, a number and a list containing the remaining numbers. The recursive function will extract a number from the list and, using the operation passed in, combine it with the number passed in (which is your running total). Take the running total and call yourself again with the remaining items on the list (you'll have to iterate the list within the call but the sequence of calls is depth-first). Do this once for each of the four operators unless Success has been achieved by a previous leg of the search.
I updated this to use a list instead of a stack
When the result of the operation is your target number and your list is empty, then you have successfully found the set of operations (those that traced the path to the successful leaf) - set the Success flag and unwind. Note that the operators aren't on a list nor are they in the call: the function itself always iterates over all four. Your mechanism for "unwinding" the operator sequence from the successful leaf to get the sequence is to return the current operator and number prepended to the value returned by recursive call (only one of which will be successful since you stop at success - that, obviously, is the one to use). If none are successful, then what you return isn't important anyhow.
Update This is much harder when you have to consider expressions like the one that Daniel posted. You have combinatorics on the numbers and the groupings (numbers due to the fact that / and - are order sensitive even without grouping and grouping because it changes precedence). Then, of course, you also have the combinatorics of the operations. It is harder to manage the differences between (4 + 3) * 2 and 4 + (3 * 2) because grouping doesn't recurse like operators or numbers (which you can just iterate over in a breadth-first manner while making your (depth-first) recursive calls).
Here's some Python code to get you started: it just prints all the possible expressions, without worrying too much about redundancy. You'd need to modify it to evaluate expressions and compare to the target number, rather than simply printing them.
The basic idea is: given a set S of numbers, partition S into two subsets left and right in all possible ways (where we don't care about the order or the elements in left and right), such that left and right are both nonempty. Now for each of these partitions, find all ways of combining the elements in left (recursively!), and similarly for right, and combine the two resulting values with all possible operators. The recursion bottoms out when a set has just one element, in which case there's only one value possible.
Even if you don't know Python, the expressions function should be reasonably easy to follow; the splittings function contains some Python oddities, but all it does is to find all the partitions of the list l into left and right pieces.
def splittings(l):
n = len(l)
for i in xrange(2**n):
left = [e for b, e in enumerate(l) if i & 2**b]
right = [e for b, e in enumerate(l) if not i & 2**b]
yield left, right
def expressions(l):
if len(l) == 1:
yield l[0]
else:
for left, right in splittings(l):
if not left or not right:
continue
for el in expressions(left):
for er in expressions(right):
for operator in '+-*/':
yield '(' + el + operator + er + ')'
for x in expressions('1234'):
print x
pusedo code:
Works(list, target)
for n in list
tmp=list.remove(n)
return Works(tmp,target+n) or Works(tmp,target-n) or Works(tmp, n-target) or ...
then you just have to put the base case in. I think I gave away to much.

Resources