understanding the repeat function in Scheme - scheme

The code to repeat a function in Scheme is the following:
(define (repeat f n)
(if (= n 1)
f
(lambda (x) (f ((repeat f (- n 1)) x)))))
But I don't manage to understand how the recursion here works with the lambda(x) and so on.
Can someone explain this with an example like (repeat f 3)?
Thank you

Using the substitution method and working "upwards":
(repeat f 1)
--> f
which is equivalent to (lambda (x) (f x)), if f is a unary function.
And then,
(repeat f 2)
--> (lambda (x) (f ((repeat f 1) x)))
--> (lambda (x) (f (f x)))
and
(repeat f 3)
--> (lambda (x) (f ((repeat f 2) x)))
[through name change in the "inner" lambda]
--> (lambda (x) (f ((lambda (y) (f (f y))) x)))
[through ((lambda (y) (f (f y))) x) --> (f (f x))]
--> (lambda (x) (f (f (f x))))

The thing to realize is that this repeat function doesn't actually call f n times. It returns a new function that will call f n times. You can see this in the base case: when (= n 1), it simply returns f, it doesn't execute (f).
(repeat f (- n 1)) calls repeat recursively to get a function that calls f one less time. lambda is then used to construct a new function that calls this new function and then calls f to make the total n calls.

Related

temporarily overwrite a globally defined function in Scheme let block?

suppose I have the following functions:
(define (g x) (f x))
(define (f x) (+ 1 x))
I would like to temporarily call g with a different f. For example, something like this:
(let ((f (lambda (x) (+ 2 x))))
(g 5))
I would like the code above to evaluate to 7, but it doesn't. Instead, it evaluates to 6, since g calls the f outside the scope of the let.
Is there a way to do this without redefining g inside the let, and without inlining the entire body of the definition of g in the let? (In practice, g may be a very large, complicated function).
What you are asking for is dynamic rather than lexical binding of 'f'. R6RS and R7RS support this with parameters. This will do what you want:
(define f (make-parameter (lambda (x) (+ 1 x))))
(define (g x) ((f) x))
(display (g 5))(newline)
(parameterize ((f (lambda (x) (+ 2 x))))
(display (g 5))(newline))
I'm not sure that you can, but I'm by no means a Scheme expert.
I realise that you're trying to achieve this without redefining g inside the let, but how about:
(define (h f x) (f x))
(define (g x) (h f x))
(define (f x) (+ 1 x))
(let ((f (lambda (x) (+ 2 x))))
(h f 5))
That way, you preserve the behaviour of g where it's currently being called. But where you want to temporarily have a different behaviour, you can call h instead.
A bit more code for clarification:
(let ((f (lambda (x) (+ 2 x))))
(display (g 5)) ; 6
(newline)
(h f 5)) ; 7
You could use an optional parameter in g to pass the f from the let expression.
(define (g x . args)
(if (null? args)
(f x)
((car args) x)))
and
(let ((f (lambda (x) (+ 2 x))))
(g 5 f))
I found a way to do exactly what I wanted, although I have a feeling many people will not consider this kosher:
(define (g x) (f x))
(define (f x) (+ 1 x))
(let ((old-f f))
(set! f (lambda (x) (+ 2 x)))
(let ((ans (g 5)))
(set! f old-f)
ans))
; -> 7
(g 5) ; -> 6
edit In response to the comment below, I wasn't even aware that fluid-let was a thing. It even already works on MIT-Scheme. That's actually exactly what I needed. If commenter below posts something like this as an answer, it will be made the accepted answer:
(define (g x) (f x))
(define (f x) (+ 1 x))
(fluid-let ((f (lambda (x) (+ x 2))))
(g 5)) ; -> 7
(g 5) ; -> 6

Y Combinator implementation Scheme

I am really new to scheme functional programming. I recently came across Y-combinator function in lambda calculus, something like this Y ≡ (λy.(λx.y(xx))(λx.y(xx))). I wanted to implement it in scheme, i searched alot but i didn't find any implementation which exactly matches the above given structure. Some of them i found are given below:
(define Y
(lambda (X)
((lambda (procedure)
(X (lambda (arg) ((procedure procedure) arg))))
(lambda (procedure)
(X (lambda (arg) ((procedure procedure) arg)))))))
and
(define Y
(lambda (r)
((lambda (f) (f f))
(lambda (y)
(r (lambda (x) ((y y) x)))))))
As you can see, they dont match with the structure of this Y ≡ (λy.(λx.y(xx))(λx.y(xx))) combinator function. How can I implement it in scheme in exactly same way?
In a lazy language like Lazy Racket you can use the normal order version, but not in any of the applicative order programming languages like Scheme. They will just go into an infinite loop.
The applicative version of Y is often called a Z combinator:
(define Z
(lambda (f)
((lambda (g) (g g))
(lambda (g)
(f (lambda args (apply (g g) args)))))))
Now the first thing that happens when this is applied is (g g) and since you can always substitute a whole application with the expansion of it's body the body of the function can get rewritten to:
(define Z
(lambda (f)
((lambda (g)
(f (lambda args (apply (g g) args))))
(lambda (g)
(f (lambda args (apply (g g) args)))))))
I haven't really changed anything. It's just a little more code that does exactly the same. Notice this version uses apply to support multiple argument functions. Imagine the Ackermann function:
(define ackermann
(lambda (m n)
(cond
((= m 0) (+ n 1))
((= n 0) (ackermann (- m 1) 1))
(else (ackermann (- m 1) (ackermann m (- n 1)))))))
(ackermann 3 6) ; ==> 509
This can be done with Z like this:
((Z (lambda (ackermann)
(lambda (m n)
(cond
((= m 0) (+ n 1))
((= n 0) (ackermann (- m 1) 1))
(else (ackermann (- m 1) (ackermann m (- n 1))))))))
3
6) ; ==> 509
Notice the implementations is exactly the same and the difference is how the reference to itself is handled.
EDIT
So you are asking how the evaluation gets delayed. Well the normal order version looks like this:
(define Y
(lambda (f)
((lambda (g) (g g))
(lambda (g) (f (g g))))))
If you look at how this would be applied with an argument you'll notice that Y never returns since before it can apply f in (f (g g)) it needs to evaluate (g g) which in turn evaluates (f (g g)) etc. To salvage that we don't apply (g g) right away. We know (g g) becomes a function so we just give f a function that when applied will generate the actual function and apply it. If you have a function add1 you can make a wrapper (lambda (x) (add1 x)) that you can use instead and it will work. In the same manner (lambda args (apply (g g) args)) is the same as (g g) and you can see that by just applying substitution rules. The clue here is that this effectively stops the computation at each step until it's actually put into use.

How to repeat a function call n times

I'm trying to create a function that wraps itself n times using a function called repeat
(define (repeat f n)
(if (= n 1)
f
(repeat (lambda (x) (f x)) (- n 1))))
((repeat inc 5) 2)
I'm expecting the result to be equal to
(inc (inc (inc (inc (inc 2))))) ; 7
But my result is 3
What am I doing wrong?
To be clear, I want repeat to return a function that accepts a single argument. f should not be applied until the return value of repeat is called with an argument.
e.g.,
(define inc5 (repeat inc 5))
(inc5 2) ; => 7
p.s.,
This is related but not identical to exercise 1.43 in SICP. I've solved the problem as it is presented there, but I'm curious if it can be solved this way too.
The problem with your definition is that (lambda (x) (f x)) is the same as f, i.e., your repeat repeats only once.
I think what you need is
(define (repeat f n)
(if (= n 1)
f
(lambda (x) (f ((repeat f (- n 1)) x)))))
PS. Note that you are using Scheme syntax under the Common Lisp tag; you might want to update one or the other.
Lets take a look at a similar function.
(define (repeat-exp fn ct)
(if (= ct 1)
fn
(repeat `(lambda (x) (,fn x)) (- ct 1))))
Calling it will get you
> (repeat-exp inc 5)
'(lambda (x)
((lambda (x)
((lambda (x)
((lambda (x)
((lambda (x)
(#<procedure:inc> x))
x))
x))
x))
x))
>
As you can see, your initial function only gets called once; in the innermost evaluation. If you want it to get called at each level, you need to call it there too.
(define (repeat-exp2 fn ct)
(if (= ct 1)
fn
`(lambda (x)
(,fn (,(repeat-exp2 fn (- ct 1)) x)))))
> (repeat-exp2 inc 5)
'(lambda (x)
(#<procedure:inc>
((lambda (x)
(#<procedure:inc>
((lambda (x)
(#<procedure:inc>
((lambda (x)
(#<procedure:inc>
(#<procedure:inc> x)))
x)))
x)))
x)))
>
Now you can write the numeric equivalent.
(define (repeat2 fn ct)
(if (= ct 1)
fn
(lambda (x)
(fn ((repeat2 fn (- ct 1)) x)))))
which should do what you wanted initially.
> (repeat2 inc 5)
#<procedure>
> ((repeat2 inc 5) 2)
7

Scheme - nested definition confusion

I'm currently stuck on a problem creating func and am a beginner at Scheme. In order to achieve such a result, will I have to define double inside func?
(func double 3 '(3 5 1))
would return (24 40 8) because each element is doubled 3 times.
No, double needs to be outside func because it will be passed as a parameter (bound to f) to func:
(define (double n) (* 2 n))
(define (times f e t)
(if (= t 0)
e
(times f (f e) (- t 1))))
(define (func f t lst)
(map (lambda (e) (times f e t)) lst))
then
> (func double 3 '(3 5 1))
'(24 40 8)
OTOH, in this case times could be defined inside func, but it's a reusable procedure so I'd leave it outside.
If I understand your question correctly, here's one way you can implement func:
(define (func f n lst)
(do ((n n (sub1 n))
(lst lst (map f lst)))
((zero? n) lst)))
Example usage:
> (func (lambda (x) (* x 2)) 3 '(3 5 1))
=> (24 40 8)
#lang racket
(define (repeat f x n)
(cond [(= n 0) x]
[else (f (repeat f x (- n 1)))]))
(define (func f n xs)
(map (λ(x) (repeat f x n)) xs))
(define (double x)
(* 2 x))
(func double 3 '(3 5 1))
Possibly something like this:
(define (cmap fun arg1 lst)
(map (lambda (x) (fun arg1 x)) lst))
But really you want to do this (cmap list 1 (get-some-calc x) (get-list)) but it's very difficult to make it take any curried argument and perhaps you want more than one list. You do it like this:
(let ((cval (get-come-calc x)))
(map (lambda (x) (list 1 cval x)) (get-list)))

How do I make the substitution ? Scheme

How do I make the substitution? I tried to trace but I don't really get what is going on...
the code:
(define (repeated f n)
(if (zero? n)
identity
(lambda (x) ((repeated f (- n 1)) (f x)))))
f is a function and n is an integer that gives the number of times we should apply f.
....can someone help me to interpret it. I know it returns several procedures and i want to believe that it goes f(f(f(x)))
okey i will re-ask this question but in different manner, because i didn't really get an answer last time. consider this code
(define (repeated f n)
(if (zero? n)
identity
(lambda (x) ((repeated f (- n 1)) (f x)))))
where n is a positive integer and f is an arbitrary function: how does scheme operate on this code lets say we give (repeated f 2). what will happen? this is what think:
(f 2)
(lambda (x) ((repeated f (- 2 1)) (f x))))
(f 1)
(lambda (x) ((lambda (x) ((repeated f (- 1 1)) (f x)))) (f x))))
(f 0)
(lambda (x) ((lambda (x) (identity (f x)))) (f x))))
> (lambda (x) ((lambda (x) (identity (f x)))) (f x))))
> (lambda (x) ((lambda (x) ((f x)))) (f x))))
here is were i get stuck first i want it to go (f(f(x)) but now i will get (lambda x ((f x) (f x)) , the parentheses is certaintly wrong , but i think you understand what i mean. What is wrong with my arguments on how the interpreter works
Your implementation actually delays the further recursion and return a procedure whose body will create copies of itself to fulfill the task at runtime.
Eg. (repeated double 4) ==> (lambda (x) ((repeated double (- 4 1)) (double x)))
So when calling it ((repeated double 4) 2) it runs ((repeated double (- 4 1)) (double 2)))
where the operand part evaluates to (lambda (x) ((repeated double (- 3 1)) (double x))) and so on making the closures at run time so the evaluation becomes equal to this, but in stages during runtime..
((lambda (x) ((lambda (x) ((lambda (x) ((lambda (x) ((lambda (x) (identity x)) (double x))) (double x))) (double x))) (double x))) 2)
A different way of writing the same functionality would be like this:
(define (repeat fun n)
(lambda (x)
(let repeat-loop ((n n)
(x x))
(if (<= n 0)
x
(repeat-loop (- n 1) (fun x))))))
(define (double x) (+ x x))
((repeat double 4) 2) ; ==> 32
You've got a function that takes a function f and an non-negative integer n and returns the function fn, i.e., f(f(f(…f(n)…). Depending on how you think of your recursion, this could be implemented straightforwardly in either of two ways. In both cases, if n is 0, then you just need a function that returns its argument, and that function is the identity function. (This is sort of by convention, in the same way that x0 = 1. It does make sense when it's considered in more depth, but that's probably out of scope for this question.)
How you handle the recursive case is where you have some options. The first option is to think of fn(x) as f(fn-1(x)), where you call f with the result of calling fn-1 with x:
(define (repeated f n)
(if (zero? n)
identity
(lambda (x)
(f ((repeated f (- n 1)) x)))))
The other option is to think of fn(x) as fn-1(f(x)) where _fn-1 gets called with the result of f(x).
(define (repeated f n)
(if (zero? n)
identity
(lambda (x)
((repeated f (- n 1)) (f x)))))
In either case, the important thing to note here is that in Scheme, a form like
(function-form arg-form-1 arg-form-2 ...)
is evaluated by evaluating function-form to produce a value function-value (which should be a function) and evaluating each arg-form-i to produce values arg-value-i, and then calling _function-value_ with the arg-values. Since (repeated ...) produces a function, it's suitable as a function-form:
(f ((repeated f (- n 1)) x))
; |--- f^{n-1} ------|
; |---- f^{n-1}(x) ------|
;|------f(f^{n-1}(x)) ------|
((repeated f (- n 1)) (f x))
; |--- f^{n-1} ------|
;|---- f^{n-1}(f(x))--------|
Based on Will Ness's comment, it's worth pointing out that while these are somewhat natural ways to decompose this problem (i.e., based on the equalities fn(x) = fn-1(f(x)) = f(fn-1(x))), it's not necessarily the most efficient. These solutions both require computing some intermediate function objects to represent fn-1 that require a fair amount of storage, and then some computation on top of that. Computing fn(x) directly is pretty straightforward and efficient with, e.g., repeat:
(define (repeat f n x)
(let rep ((n n) (x x))
(if (<= n 0)
x
(rep (- n 1) (f x)))))
A more efficient version of repeated, then, simply curries the x argument of repeat:
(define (repeated f n)
(lambda (x)
(repeat f n x)))
This should have better run time performance than either of the other implementations.
Danny. I think that if we work repeated with small values of n (0, 1 and 2) will be able to see how the function translates to f(f(f(...(x))). I assume that identity's implementation is (define (identity x) x) (i.e. returns its only parameter as is), and that the "then" part of the if should be (identity f).
(repeated f 0) ;should apply f only once, no repetition
-> (identity f)
-> f
(repeated f 1) ;expected result is f(f(x))
-> (lambda (x) ((repeated f 0) (f x)))
-> (lambda (x) (f (f x))) ;we already know that (repeated f 0) is f
(repeated f 2) ;expected result is f(f(f(x)))
-> (lambda (x) ((repeated f 1) (f x)))
-> (lambda (x) (f (f (f x)))) ; we already know that (repeated f 1) if f(f(x))
... and so on.
Equational reasoning would be very helpful here. Imagine lambda calculus-based language with Haskell-like syntax, practically a combinatory calculus.
Here, parentheses are used just for grouping of expressions (not for function calls, which have no syntax at all – just juxtaposition): f a b c is the same as ((f a) b) c, the same as Scheme's (((f a) b) c). Definitions like f a b = ... are equivalent to (define f (lambda (a) (lambda (b) ...))) (and shortcut for (lambda (a) ...) is (\a-> ...).
Scheme's syntax just obscures the picture here. I don't mean parentheses, but being forced to explicit lambdas instead of just equations and freely shifting the arguments around:
f a b = \c -> .... === f a b c = .... ; `\ ->` is for 'lambda'
Your code is then nearly equivalent to
repeated f n x ; (define (repeated f n)
| n <= 0 = x ; (if (zero? n) identity
| otherwise = repeated f (n-1) (f x) ; (lambda (x)
; ((repeated f (- n 1)) (f x)))))
(read | as "when"). So
repeated f 2 x = ; ((repeated f 2) x) = ((\x-> ((repeated f 1) (f x))) x)
= repeated f 1 (f x) ; = ((repeated f 1) (f x))
= repeated f 0 (f (f x)) ; = ((\y->((repeated f 0) (f y))) (f x))
= f (f x) ; = ((\z-> z) (f (f x)))
; = (f (f x))
The above reduction sequence leaves out the particulars of environment frames creation and chaining in Scheme, but it all works out pretty much intuitively. f is the same f, n-1 where n=2 is 1 no matter when we perform the subtraction, etc..

Resources