Prolog query: how does addition matter for recursive queries - prolog

I'm trying to write a predicate to find the nth element of a list.
Initially I wrote something like this:
nth([X|_], 0, X).
nth([_|T],N,Z):- N > 0, nth(T, M, Z), N is M + 1.
It works for queries such as nth([1, 2, 3, 4, 5], 0, X). but for queries such as nth([1, 2, 3, 4, 5], N, 1)., I get an "arguments insufficiently instantiated error" after I enter ";" after getting the answer. I know that there will be only 1 ans in this case, but for the sake of completeness, I want to know why.
I read on stack overflow here that the following is a better solution:
nth([X|_], 0, X) :- !.
nth([_|Y], N, Z) :- N > 0, M is N-1, nth(Y, M, Z).
I want to understand why M is N-1, nth(Y, M, Z). makes a difference as against the nth(T, M, Z), N is M + 1 in my answer.
PS: I think the question title can be improved, but I'm not sure of how. If you have suggestions, please let me know!

is/2 is not a complete constraint solver. So N is M + 1 and M is N - 1 look to be equivalent but they are not. The first only succeeds when M is instantiated and second when N is instantiated. Have you tried your solution with indices other zero? They will not work. You can use plus(1, M, N) instead of either of them to get it to work. Also clause ordering matters so plus(1, M, N) should be before the recursive call to nth.
nth([X|_], 0, X).
nth([_|T],N,Z):- N > 0, plus(1, M, N), nth(T, M, Z).
If N > 0, nth(T, M, Z), plus(1, M, N) is your clause ordering, your program will try to satisfy nth(T, M, Z) first and cause an uninstantiated error at N > 0 since M is not already instantiated.
Also neither program will work in the generative case.

Related

How do i write a rule in prolog called countIt?

Write a function in Scheme or rules in Prolog called countlt that takes a list of numbers, L, and another number, N, and returns the count of numbers less than N in the list L.
?- countlt([6, 1, 9], 4, X).
X = 1.
?- countit([50, 27, 13], 1, X).
X = 0.
Something like this will solve your problem, if you are looking for a solution without that doesn't use any of the built-in or library predicates:
countlt([], _, 0).
countlt([A | B], N, X) :- ((N > A, countlt(B, N, T), X is T + 1); countlt(B, N, X)), !.
You could of course expand this into multiple lines but I find this solution more straightforward and with less tampering with cut operators.

Separating a list into a list of fixed length sublists

Given a list L, for instance, [1,2,3,4,5,6,7] and a number N, for instance 3, I would like to make a predicate that would separate the elements of L into lists of size N.
So, the result will be: [[1,2,3], [4,5,6], [7]] in our case.
What I have tried:
% List containing the first N elements of given list.
takeN([X|Xs], 0, []) :- !.
takeN([X|Xs], N, [X|Ys]) :- N1 is N-1, takeN(Xs, N1, Ys).
% Given list without the first N elements.
dropN(R, 0, R) :- !.
dropN([X|Xs], N, R) :- N1 is N-1, dropN(Xs, N1, R).
% size of list.
sizeL([], 0) :- !.
sizeL([X|Xs], N) :- sizeL(Xs, N1), N is N1+1.
blockify(R, N, [R|[]]) :- sizeL(R, N1), N1 < N, !.
blockify([X|Xs], N, [Y|Ys]) :- sizeL(R, N1), N1 >= N, takeN([X|Xs], N, Y),
dropN([X|Xs], N, Res), blockify(Res, N, Ys).
It doesn't work (blockify([1,2,3], 2, R) for example returns false, instead of [[1,2], [3]]).
I can't find where I'm mistaken, though. What's wrong with this?
I think you are making thinks a bit overcomplicated. First of all let's exclude the case where we want to blockify/3 the empty list:
blockify([],_,[]).
Now in the case there are elements in the original list, we simply make use of two accumulators:
- some kind of difference list that stores the running sequence; and
- an accumulator that counts down and look whether we reached zero, in which case we append the running difference list and construct a new one.
So this would be something like:
blockify([H|T],N,R) :-
N1 is N-1,
blockify(T,N1,N1,[H|D],D,R).
Now the blockify/5 has some important cases:
we reach the end of the list: in that case we close the difference list and append it to the running R:
blockify([],_,_,D,[],[D]).
we reach the bottom of the current counter, we add the difference list to R and we intialize a new difference list with an updated counter:
blockify([H|T],N,0,D,[],[D|TR]) :-
blockify(T,N,N,[H|D2],D2,TR).
none of these cases, we simply append the element to the running difference decrement the accumulator and continue:
blockify([H|T],N,M,D,[H|D2],TR) :-
M > 0,
M1 is M-1,
blockify(T,N,M1,D,D2,TR).
Or putting it all together:
blockify([],_,[]).
blockify([H|T],N,R) :-
N1 is N-1,
blockify(T,N1,N1,[H|D],D,R).
blockify([],_,_,D,[],[D]).
blockify([H|T],N,0,D,[],[D|TR]) :-
blockify(T,N,N,[H|D2],D2,TR).
blockify([H|T],N,M,D,[H|D2],TR) :-
M > 0,
M1 is M-1,
blockify(T,N,M1,D,D2,TR).
Since in each recursive call all clauses run in O(1) and we do the recursion O(n) deep with n the number of elements in the original list, this program runs in O(n).
if your Prolog provides length/2, a compact solution could be:
blockify(R, N, [B|Bs]) :-
length(B, N),
append(B, T, R),
!, blockify(T, N, Bs).
blockify(R, _N, [R]).
Let me teach you how to debug a Prolog query:
1) blockify([1,2,3], 2, R)
2) does it match blockify(R, N, [R|[]]) ? oh yes,
it can be bound to blockify([1, 2, 3], 2, [[1, 2, 3]])
3) let's evaluate the body: sizeL(R, N1), N1 < N, !.
Replace R and N, we get: sizeL([1, 2, 3], N1), N1 < 2, !.
4) evaluate sizeL([1, 2, 3], N1): for brevity, since it's a common
list count predicate, the result should be obvious: N1 = 3
5) evaluate N1 < N: 3 < 2 => false
6) since the rest are all , (and operator) a single false
is enough to make the whole body to evaluate to false
7) there you go, the predicate is false
See where your mistake is?

Finding the largest even number in list

The point of this program is supposed to be to find the largest even number inside a list. For example, the query:
? - evenmax([1, 3, 9, 16, 25, -5, 18], X]
X = 18.
The way I thought to do this is to separate the list into two, one with just odd numbers and one with just even numbers. However, after doing that, I legitimately have no idea how to take the even-number list specifically and find the maximum integer in that.
Here is what I currently have:
seperate_list([], [], []).
separate_list([X|Xs], [X|Even], Odd) :-
0 is X mod 2,
separate_list(Xs, Even, Odd).
separate_list([X|Xs], Even, [X|Odd]) :-
1 is X mod 2,
separate_list(Xs, Even, Odd).
find_max([X|Xs], A, Max).
X > A,
find_max(Xs,X,Max).
find_max([X|Xs],A,Max) :-
X =< A,
find_max(Xs,A,Max).
find_max([],A,A).
I am still a newcomer to Prolog, so please bear with me...and I appreciate the help.
You could do it in one go. You can find the first even number in the list, then use this as seed and find the largest even number in the rest of the list.
But if you don't insist on doing it in a single traversal through the list, you can first collect all even numbers, then sort descending and take the first element of the sorted list.
evenmax(List, M) :-
include(even, List, Even),
sort(Even, Sorted),
reverse(Sorted, [M|_]).
even(E) :-
E rem 2 =:= 0.
If you want to see how include/2 is implemented, you can look here. Basically, this is a generalized and optimized version of the separate_list/3 that you have already defined in your question. sort/2 is a built-in, and reverse/2 is a library predicate, implementation is here.
There are many other ways to achieve the same, but for starters this should be good enough. You should ask more specific questions if you want more specific answers, for example:
What if the list has free variables?
What if you want to sort in decreasing order instead of sorting and then reversing?
How to do it in a single go?
and so on.
Sorry but... if you need the maximum (even) value... why don't you simply scan the list, memorizing the maximum (even) value?
The real problem that I see is: wich value return when there aren't even values.
In the following example I've used -1000 as minumum value (in case of no even values)
evenmax([], -1000). % or a adeguate minimum value
evenmax([H | T], EM) :-
K is H mod 2,
K == 0,
evenmax(T, EM0),
EM is max(H, EM0).
evenmax([H | T], EM) :-
K is H mod 2,
K == 1,
evenmax(T, EM).
-- EDIT --
Boris is right: the preceding is a bad solution.
Following his suggestions (thanks!) I've completely rewritten my solution. A little longer but (IMHO) a much better
evenmaxH([], 1, EM, EM).
evenmaxH([H | T], 0, _, EM) :-
0 =:= H mod 2,
evenmaxH(T, 1, H, EM).
evenmaxH([H | T], 1, M0, EM) :-
0 =:= H mod 2,
M1 is max(M0, H),
evenmaxH(T, 1, M1, EM).
evenmaxH([H | T], Found, M, EM) :-
1 =:= H mod 2,
evenmaxH(T, Found, M, EM).
evenmax(L, EM) :-
evenmaxH(L, 0, 0, EM).
I define evenmax like there is no member of list L which is even and is greater than X:
memb([X|_], X).
memb([_|T], X) :- memb(T,X).
even(X) :- R is X mod 2, R == 0.
evenmax(L, X) :- memb(L, X), even(X), not((memb(L, Y), even(Y), Y > X)), !.
There are already a number of good answers, but none that actually answers this part of your question:
I legitimately have no idea how to take the even-number list
specifically and find the maximum integer in that
Given your predicate definitions, it would be simply this:
evenmax(List, EvenMax) :-
separate_list(List, Evens, _Odds),
find_max(Evens, EvenMax).
For this find_max/2 you also need to add a tiny definition:
find_max([X|Xs], Max) :-
find_max(Xs, X, Max).
Finally, you have some typos in your code above: seperate vs. separate, and a . instead of :- in a clause head.

Prolog Break Money into Smaller Amounts

I have this predicate which returns true if S is equal to some equation say K + 2N + 3L = S. The money we have are 1, 5, and 10 respectively for K, N, L.
I don't want to use :- use_module(library(clpfd)), I want to solve this without it.
My intuition was to break this into subproblems like write a function breakMoney1(S,K) :- K is S. and create more helpers with one more parameter added however I am struggling with the problem of getting uninstantiated variables, when I compare.
breakMoney(S,K,N,L) :-
This is easier than you think, probably. A very naive solution following #Will Ness' suggestion would be:
break(Sum, K, N, L) :- integer(Sum), Sum >= 0,
% upper bounds for K, N, and L
K_Max is Sum div 1,
N_Max is Sum div 5,
L_Max is Sum div 10,
% enumerate possible values for K, N, and L
between(0, L_Max, L),
between(0, N_Max, N),
between(0, K_Max, K),
Sum =:= K + 5*N + 10*L.
This will "magically" turn into a clp(fd) solution with very little effort: for example, replace between with X in 0..Max, and the =:= with #=. Although, it should be enough to simply say that X #>= 0 for each of the denominations. It is a good exercise to see how much of the constraints you can remove and still get an answer:
break(Sum, K, N, L) :-
K #>= 0, N #>= 0, L #>= 0,
Sum #= K + 5*N + 10*L.
Depending on how you instantiate the arguments, you might immediately get a unique answer, or you might need to use label/1:
?- break(100, P, 8, 5).
P = 10.
?- break(10, K, N, L).
K in 0..10,
-1*K+ -5*N+ -10*L#= -10,
N in 0..2,
L in 0..1.
?- break(10, K, N, L), label([K, N, L]).
K = N, N = 0,
L = 1 ;
K = L, L = 0,
N = 2 ;
K = 5,
N = 1,
L = 0 ;
K = 10,
N = L, L = 0.
But as #lurker has pointed out, there is very little reason not to use constraint programming for this problem. Unless, of course, you have a very clever algorithm for solving this particular problem and you know for a fact that it will outsmart the generic clp(fd) solution. Even then, it might be possible to achieve the same effect by using the options to labelling/2.

Prolog Find N prime numbers

I have a problem with the recursive function of Prolog. I believe I am not implementing it right and need help.
I need to generate the first N prime numbers and return it in a list. Generating the prime number is not an issue, but rather, generating it in a list is the issue I have.
This is the part of the relevant code:
genList(_, 0, _).
genList(X, N, PrimeList, PrimeList):-
N > 0,
isprime(X),
X1 is X +1,
N1 is N -1,
genList(X1,N1,[X|PrimeList], [X|PrimeList]),!.
genList(X, N, PrimeList, PrimeList):-
N>0,
\+isprime(X),
X1 is X + 1,
genList(X1,N,PrimeList, PrimeList).
This is what I type into the Prolog interpreter:
genList(1,N, [],L).
For the 1st line, how do I make the base case such that when N=0, I stop recursing? Is this correct?
As for the next 2 clauses, I am having difficulty in thinking in terms of logic programming. I definitely feel that this is not logic programming style.
I want to say that when isPrime(X) fails, we continue to the next number without saving anything, but when isPrime(X) is true, then we recurse and continue to the next number, saving X.
How do I do that in Prolog?
First of all, you shouldn't need 4 arguments to your main predicate if you only want two. Here you want the list of the first primes up to N. So an argument for N and an argument for the list should be enough:
primeList(N, L) :-
% eventually in the body a call to a worker predicate with more arguments
Now here, your logic is explained in those terms:
primeList(N, [N|L]) :-
% If we're not at the base case yet
N > 0,
% If N is a prime
isPrime(N),
NewN is N - 1,
% Let's recurse and unifie N as the head of our result list in the head
% of the predicate
primeList(NewN, L).
primeList(N, L) :-
% Same as above but no further unification in the head this time.
N > 0,
% Because N isn't a prime
\+ isPrime(N),
NewN is N - 1,
primeList(NewN, L).
To that you'd have to add the base case
primeList(0, []).
You could rewrite that with cuts as follows:
primeList(0, []) :- !.
primeList(N, [N|L]) :-
isPrime(N),
!,
NewN is N - 1,
primeList(NewN, L).
primeList(N, L) :-
NewN is N - 1,
primeList(NewN, L).
Here's what you meant to write:
genList(N, L) :- genList(2, N, L, []).
genList(X, N, L, Z):- % L-Z is the result: primes list of length N
N > 0 ->
( isprime(X) -> L=[X|T], N1 is N-1 ; L=T, N1 is N ),
X1 is X + 1,
genList(X1,N1,T,Z)
;
L = Z.
The if-then-else construct embodies the cuts. And you're right, it's essentially a functional programming style.
We can introduce a little twist to it, disallowing requests for 0 primes (there's no point to it anyway), so that we also get back the last generated prime:
genList(1, [2], 2) :- !.
genList(N, [2|L], PN) :- N>1, L=[3|_], N2 is N-2, gen_list(N2, L, [PN]).
gen_list(N, L, Z) :- L=[P|_], X is P+2, gen_list(X, N, L, Z).
gen_list(X, N, L, Z) :- % get N more odd primes into L's tail
N > 0 ->
( isprime(X) -> L=[_|T], T=[X|_], N1 is N-1 ; L=T, N1 is N ),
X1 is X + 2,
gen_list(X1,N1,T,Z)
;
L = Z. % primes list's last node
Run it:
?- genList(8,L,P).
L = [2, 3, 5, 7, 11, 13, 17, 19]
P = 19
This also enables us to stop and continue the primes generation from the point where we stopped, instead of starting over from the beginning:
?- L = [3|_], gen_list(8, L, Z), Z=[P10|_], writeln([2|L]),
gen_list(10, Z, Z2), Z2=[P20], writeln(Z).
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29|_G1037]
[29,31,37,41,43,47,53,59,61,67,71]
P10 = 29
P20 = 71

Resources