Update list in racket without hash - scheme

I have the 2 lists, '(1 2 3 4), and '(add1 sub1 add1). They do not have same length. The first list is numbers, the second list is functions. I want to apply the functions to each of element in the number list.
'(1 2 3 4) (add1 sub1 add1) -> '(2 3 4 5) '(sub1 add1)
It look very simple, but I find I can not update the lists. Because in Scheme there is no way to update lists without hash. I can only create new lists. So every time I have to create a new list for each function in the second list. Can someone help me code this question?

Alternatively you could use map and compose in combination.
This is much easier to read and understand.
(map (compose add1 sub1 add1) '(1 2 3 4))
;; '(2 3 4 5)
(compose add1 sub1 add1) chains the functions one after another
and map applies this chained/composed function on each element of the input list '(1 2 3 4).
Generalize to a function:
(define (map-functions funcs . args)
(apply map (apply compose funcs) args))
(map-functions (list add1 sub1 add1) '(1 2 3 4)) ;; '(2 3 4 5)
compose is inbuilt but one can define it like this (% in names to not to overwrite the existing compose.
;; first a compose to compose to functions
(define (%%compose f1 f2)
(lambda args
(f1 (apply f2 args))))
;; then, generalize it for as many functions as one wants (as a variadic function) using `foldl`
(define (%compose . funcs)
(foldl %%compose (car funcs) (cdr funcs)))

You're looking for a left fold. It looks like Racket calls it foldl, which will do the job, combined with map. Something like (Untested, because I don't have Racket installed):
(define functions (list add1 sub1 add1)) ; So you have functions instead of symbols like you get when using quote
(define numbers '(1 2 3 4))
(foldl (lambda (f lst) (map f lst)) numbers functions)
Basically, for each function in that list, it maps the function against the list returned by mapping the previous function (Starting with the initial list of numbers when there is no previous).
If you're stuck with a list of symbols and can't use the (list add1 ... trick to get references to the actual functions, one approach (And I hope there are better ones) is to use eval and some quasiquoting:
(foldl (lambda (f lst) (eval `(map ,f (quote ,lst)))) '(1 2 3 4) '(add1 sub1 add1))

Related

SCHEME from list to its values

How can I convert this list
(define l list '(1 2 3 4) )
to its own value 1, 2, 3 and 4
I need to do this because I have a function
(define (push! stk . args)
(stk 'push! args ) )
for this other function
((eq? msg 'push!) (set! stack (append (reverse args) stack)))
but the result I get when using push! is a list in a list, I don't want this
You can by iteration. eg. fold:
(fold cons '() '(1 2 3 4))
; ==> (4 3 2 1)
Now the most stackie functional structure is the lisp list since it is a singly linked list that constructs from end to beginning while iterates from beginning to end.
Go the other way instead - gather all the arguments in one list, and then apply:
(apply push! (cons the-stack l))

map a function over a list of lists and concatenates the result into a list

How can I map a function for instance (square x) over a list of lists (list (list 1 2) (list 3 4)) and at the same time concatenates the result. For example the result would be (1 4 9 16).
I can't find any detailed explanations on the web... thanks for any advice!
Best Regards, Eunice
Try this:
(append-map (lambda (slst) (map sqr slst))
(list (list 1 2) (list 3 4)))
The innermost map squares each number, and the outermost append-map traverses the sublists, appending them at the end. In case your language doesn't support append-map, here's an equivalent solution:
(apply append
(map (lambda (slst) (map sqr slst))
(list (list 1 2) (list 3 4))))

Scheme operation on a function

Is it possible to do an operation on a previous function, i have a list of values say (1,2,3,4,5), first function needs to multiply them by 2, while 2nd function adds 1 to result of previous function, so first we would get (2,4,6,8,10), and then (3,5,7,9,11) i got this, function g does extra work, is it possible nstead of doing operations on the element do it on function F or results from function F
#lang racket
(define test (list 1 1 2 3 5))
(define (F)
(map (lambda (element) (* 2 element))
test))
(define (G)
(map (lambda (element) (+ 1 (* 2 element)))
test))
First you need to correctly define your procedures to take a list parameter (called lst in this case):
(define (F lst)
(map (lambda (e) (* 2 e)) lst))
(define (G lst)
(map add1 lst))
Then
> (F '(1 2 3 4 5))
'(2 4 6 8 10)
> (G '(2 4 6 8 10))
'(3 5 7 9 11)
or, if you need to combine both procedures:
> (G (F '(1 2 3 4 5)))
'(3 5 7 9 11)
This is a follow-up to your previous question. As stated in my answer there, you should pass the right parameters to the functions - in particular, pass the input lists as parameter, so you can use the result from one function as input for the next function:
(define test (list 1 1 2 3 5))
(define (multiply-list test)
(map (lambda (element) (* 2 element))
test))
(define (add-list test)
(map (lambda (element) (+ 1 element))
test))
Now, if we want to add one to each element in the input list:
(add-list test)
=> '(3 3 5 7 11)
Or if we want to multiply by two each element in the input list:
(multiply-list test)
=> '(2 2 4 6 10)
And if we want to add one first, then multiply by two we can chain the functions! the result from one becomes the input for the other, and the final result will be as follows:
(multiply-list (add-list test))
=> '(6 6 10 14 22)
NB! You have tagged scheme but you use racket (the language). Not all of my examples will work in scheme.
Yes! you even do it yourself in your definition of G where you add a value and the result of a multiplication.
Its possible to chain map
(map f3 (map f2 (map f1 lst)))
Thus if you instead make a function that takes a list and doubles it:
(define (list-double lst)
(map (lambda (x) (* x 2)) lst))
You can chain it to quadruple it:
(define (list-quadruple lst)
(list-double (list-double lst)))
Now it's not optimal to chain map if you can avoid it. Instead you can compose the procedures together:
(define (double x) (* x 2))
(define (list-quadrouple lst)
(map (compose1 double double) lst))
compose1 here is the same as making a anonymous function where you chain the arguments. Eg. the last would be (lambda (x) (double (double x))). A more complex one compose can do more than one value between procedures. eg. (compose + quotient/remainder)

Scheme create list of pairs using foldr without explicit recursion

I am learning a course of Scheme and have to do the following task. I have to write a function that gets two lists A and B in the same length and returns one list that every item inside is a list of two items - one from A and second from B.
For example the function gets '( 1 2 3) and '(4 5 6) and returns '((1 4)(2 5)(3 6)).
I can do that using map like this:
(define (func lst1 lst2) (map (lambda(x y) (list x y)) lst1 lst2))
But the the question is to do that by foldr and without explicit recursion.
Can anyone please help me? I have no idea how to do that....
Thanks!
The trick is knowing what to pass as a function parameter, here's how:
(define (func l1 l2)
(foldr (lambda (e1 e2 acc)
(cons (list e1 e2) acc))
'()
l1 l2))
Notice that we're passing two lists at the end of foldr, so the lambda expects three parameters: the current element from the first list (e1), the current element from the second list (e2) and the accumulated output (acc), which starts with value '(). The rest is easy, just build the output along using cons and list. It works as expected:
(func '(1 2 3) '(4 5 6))
=> '((1 4) (2 5) (3 6))

#<Closure> in output

I was writing a function to switch the last element of a list to the beginning:
(define last-elem
(lambda (l)
(car (reverse l))))
(define all-but-last
(lambda (l)
(reverse (cdr (reverse l)))))
(define (last-to-first x) (append (list last-elem x) (all-but-last x)))
(last-to-first '(1 2 3 4 5 6))
It didn't work and I knew why. I forgot to put the brackets around list last-elem x
The thing is, I was curious about the output of the wrongly-typed code:
(#<Closure> (1 2 3 4 5 6) 1 2 3 4 5)
What is the meaning if this? How did it come out to this?
In Racket, the output is
'(#<procedure:last-elem> (1 2 3 4 5 6) 1 2 3 4 5)
which is a little clearer.
A reference to a function is always stored with its referencing environment, a.k.a. as a closure, and your Scheme implementation chooses to display it that way.
(list last-elem x)
doesn't call the function last-elem. It simply returns a list of two elements: the value of the variable last-elem (which is a procedure) and the value of the argument x. You want:
(list (last-elem x))
But there's no reason to make a list in the first place. Try:
(define (last-to-first x)
(cons (last-elem x) (all-but-last x)))
In Scheme, all identifiers denote either a syntactic keyword (bound to a 'transformer') or a variable (bound to a value). In your code last-elem denotes a variable bound to a function, which you defined. When you write:
(list last-elem x)
the interpreter/compiler produces a list with the value of last-elem and x. Thus, the result of #<Closure> in the list.

Resources