Typecasting structs with same underlying types - go

For basic types we can easily cast the types if their underlying types are same .But the fields inside struct with same memory layout cannot be easily cast from one to another type.
There is a proposal for this problem unfortunately it got rejected .After an hour of googling with no luck I came here seeking the help from experts.
Look at example below
:
package main
import (
"fmt"
)
type Int int
type A struct {
name string
age Int
}
type B struct {
name string
age int
}
func main() {
var a A= A{"Foo",21}
var b B= B{"Bar", 21}
fmt.Println(a,b,(A)(b)) //Error here as expected
}
Eventhough struct A and B has the same underlying type of struct { string,int} why cannot I cast to each other as the underlying type of Int is int.
Whether it is possible to cast recursively unless the underlying type differs?

You can't do it simply because the language spec does not allow it. Regarding structs, you can only convert from one type to the other if Spec: Conversion:
A non-constant value x can be converted to type T in any of these cases:
...
ignoring struct tags (see below), x's type and T have identical underlying types.
If you're absolutely sure the structs' memory layout is identical, you may use an unsafe conversion (using package unsafe) like this:
var a A = A{"Foo", 21}
var b B
b = *(*B)(unsafe.Pointer(&a))
fmt.Println(a, b)
This will output (try it on the Go Playground):
{Foo 21} {Foo 21}
But use this as the last resort. Using unsafe you lose compile time type safety and portability guarantees. E.g. if later you only modify one of the structs, the above code will continue to compile even though it might not be correct anymore, and the compiler will not able to inform you about that.

Related

Is type casting structs in Go a no-op?

Consider the following code in Go
type A struct {
f int
}
type B struct {
f int `somepkg:"somevalue"`
}
func f() {
var b *B = (*B)(&A{1}) // <-- THIS
fmt.Printf("%#v\n", b)
}
Will the marked line result in a memory copy (which I would like to avoid as A has many fields attached to it) or will it be just a reinterpretation, similar to casting an int to an uint?
EDIT: I was concerned, whether the whole struct would have to be copied, similarly to converting a byte slice to a string. A pointer copy is therefore a no-op for me
It is called a conversion. The expression (&A{}) creates a pointer to an instance of type A, and (*B) converts that pointer to a *B. What's copied there is the pointer, not the struct. You can validate this using the following code:
a:=A{}
var b *B = (*B)(&a)
b.f=2
fmt.Printf("%#v\n", a)
Prints 2.
The crucial points to understand is that
First, unlike C, C++ and some other languages of their ilk, Go does not have type casting, it has type conversions.
In most, but not all, cases, type conversion changes the type but not the internal representation of a value.
Second, as to whether a type conversion "is a no-op", depends on how you define the fact of being a no-op.
If you are concerned with a memory copy being made, there are two cases:
Some type conversions are defined to drastically change the value's representation or to copy memory; for example:
Type-converting a value of type string to []rune would interpret the value as a UTF-8-encoded byte stream, decode each encoded Unicode code point and produce a freshly-allocated slice of decoded Unicode runes.
Type-converting a value of type string to []byte, and vice-versa, will clone the backing array underlying the value.
Other type-conversions are no-op in this sense but in order for them to be useful you'd need to either assign a type-converted value to some variable or to pass it as an argument to a function call or send to a channel etc — in other words, you have to store the result or otherwise make use of it.
All of such operations do copy the value, even though it does not "look" like this; consider:
package main
import (
"fmt"
)
type A struct {
X int
}
type B struct {
X int
}
func (b B) Whatever() {
fmt.Println(b.X)
}
func main() {
a := A{X: 42}
B(a).Whatever()
b := B(a)
b.Whatever()
}
Here, the first type conversion in main does not look like a memory copy, but the resulting value will serve as a receiver in the call to B.Whatever and will be physically copied there.
The second type conversion stores the result in a variable (and then copies it again when a method is called).
Reasonong about such things is easy in Go as there everything, always, is passed by value (and pointers are values, too).
It may worth adding that variables in Go does not store the type of the value they hold, so a type conversion cannot mutate the type of a variable "in place". Values do not have type information stored in them, either. This basically means that type conversions is what compiler is concerned with: it knows the types of all the participating values and variables and performs type checking.

How to convert a struct to a different struct with fewer fields

I am trying to copy a struct of type Big to type Small without explicitly creating a new struct of type Small with the same fields.
I have tried searching for other similar problems such as this and this yet all the conversions between different struct types happen only if the structs have the same fields.
Here is an example of what I tried to do:
// Big has all the fields that Small has including some new ones.
type Big struct {
A int
B string
C float
D byte
}
type Small struct {
A int
B string
}
// This is the current solution which I hope to not use.
func ConvertFromBigToSmall(big Big) Small {
return Small{
A: big.A,
B: big.B,
}
}
I expected to be able to do something like this, yet it does not work:
big := Big{}
small := Small(big)
Is there a way of converting between Big to Small (and maybe even vice-versa) without using a Convert function?
There is no built-in support for this. If you really need this, you could write a general function which uses reflection to copy the fields.
Or you could redesign. If Big is a Small plus some other, additional fields, why not reuse Small in Big?
type Small struct {
A int
B string
}
type Big struct {
S Small
C float
D byte
}
Then if you have a Big struct, you also have a Small: Big.S. If you have a Small and you need a Big: Big{S: small}.
If you worry about losing the convenience of shorter field names, or different marshalled results, then use embedding instead of a named field:
type Big struct {
Small // Embedding
C float
D byte
}
Then these are also valid: Big.A, Big.B. But if you need a Small value, you can refer to the embedded field using the unqualified type name as the field name, e.g. Big.Small (see Golang embedded struct type). Similarly, to create a Big from a Small: Big{Small: small}.
Is there a way of converting between Big to Small (and maybe even vice-versa) without using a Convert function?
The only option is to do it manually, as you have done. Whether you wrap that in a function or not, is a matter of taste/circumstance.
you can do something like this:
package main
import (
"fmt"
)
type Big struct {
Small
C float32
D byte
}
type Small struct {
A int
B string
}
func main() {
big := new(Big)
big.A = 1
big.B = "test"
big.C = 2.3
fmt.Printf("big struct: %+v", big)
fmt.Println()
small := big.Small
fmt.Printf("small struct: %+v", small)
fmt.Println()
}
output:
big struct: &{Small:{A:1 B:test} C:2.3 D:0}
small struct: {A:1 B:test}
playgroundlink:https://play.golang.org/p/-jP8Wb--att
I'm afraid there is no direct way to do that. What you did is the right way.
You can try to write the first object to JSON and then try to parse it back to the second object. Though, I wouldn't go this way.
One more way, which is a specific one is that the Big object will inherit the Small object. then you can downcast. Again, I wouldn't do that but if you must...

How builtin function "append" works: appending to a slice whose elements are of type interface

The section of appending to slices on the specification, mentions the following example:
var t []interface{}
t = append(t, 42, 3.1415, "foo") // t == []interface{}{42, 3.1415, "foo"}
I'm confused here, why can we append values of int, float and string to a slice whose elements are of interface type? And why is the result of the append like that? I tried hard/long, but I don't get it.
Because:
all types implement the empty interface
For details read over the ref spec for interfaces.
interface is similar to Object in java where all types/classes/etc are also an Object.
You can see this effect by using reflect:
package main
import (
"fmt"
"reflect"
)
func main() {
var t []interface{}
z := append(t, "asdf", 1, 2.0)
fmt.Println(z)
for i := range z {
fmt.Println(reflect.TypeOf(z[i]))
}
}
Output:
[asdf 1 2]
string
int
float64
Why is it like this? Well, think about serialization especially of JSON objects; the types can be string, int, object, etc. This allows for deserialization without specifying a fully mapped struct (maybe you don't care and want only some of the data, etc). Basically, it allows you to have a form of "weak typing" in Go; while still being able to have strong typing.
As mentioned below, reflect identifies the type for you. When programming though, you may have to do it manually.

Type assertion failed when using two different (but identical) types

I have this code
package main
import "fmt"
type MyType int
func main() {
var i interface{} = 12
f := i.(MyType)
fmt.Println(f)
}
However, I get this error:
panic: interface conversion: interface is int, not main.MyType
However, int is, in this case, the same as MyType. Is there any way to do this without using the same type?
They're not identical types. As the runtime tells you, one is int and one is MyType. Go has a very specific definition of identical.
Straight from the spec:
A type declaration binds an identifier, the type name, to a new type
that has the same underlying type as an existing type, and operations
defined for the existing type are also defined for the new type. The
new type is different from the existing type.
https://golang.org/ref/spec#Type_identity
https://golang.org/ref/spec#Type_declarations
https://golang.org/ref/spec#Types
You can easily convert between the two, MyType(12) works just fine, but type assertion is different from converting: https://golang.org/ref/spec#Type_assertions
If you'd like to do some reading about interfaces and types and all of that fun stuff, these are both super helpful:
http://blog.golang.org/laws-of-reflection
http://research.swtch.com/interfaces

What's the meaning of interface{}?

I'm new to interfaces and trying to do SOAP request by github
I don't understand the meaning of
Msg interface{}
in this code:
type Envelope struct {
Body `xml:"soap:"`
}
type Body struct {
Msg interface{}
}
I've observed the same syntax in
fmt.Println
but don't understand what's being achieved by
interface{}
Note: Go 1.18 (Q1 2022) does rename interface{} to any (alias for interface{}).
See issue 49884, CL 368254 and commit 2580d0e.
See the last part of this answer.
You can refer to the article "How to use interfaces in Go" (based on "Russ Cox’s description of interfaces"):
What is an interface?
An interface is two things:
it is a set of methods,
but it is also a type
The interface{} type (or any with Go 1.18+), the empty interface is the interface that has no methods.
Since there is no implements keyword, all types implement at least zero methods, and satisfying an interface is done automatically, all types satisfy the empty interface.
That means that if you write a function that takes an interface{} value as a parameter, you can supply that function with any value.
(That is what Msg represents in your question: any value)
func DoSomething(v interface{}) {
// ...
}
func DoSomething(v any) {
// ...
}
Here’s where it gets confusing:
inside of the DoSomething function, what is v's type?
Beginner gophers are led to believe that “v is of any type”, but that is wrong.
v is not of any type; it is of interface{} type.
When passing a value into the DoSomething function, the Go runtime will perform a type conversion (if necessary), and convert the value to an interface{} value.
All values have exactly one type at runtime, and v's one static type is interface{} (or any with Go 1.18+).
An interface value is constructed of two words of data:
one word is used to point to a method table for the value’s underlying type,
and the other word is used to point to the actual data being held by that value.
Addendum: This is were Russ's article is quite complete regarding an interface structure:
type Stringer interface {
String() string
}
Interface values are represented as a two-word pair giving a pointer to information about the type stored in the interface and a pointer to the associated data.
Assigning b to an interface value of type Stringer sets both words of the interface value.
The first word in the interface value points at what I call an interface table or itable (pronounced i-table; in the runtime sources, the C implementation name is Itab).
The itable begins with some metadata about the types involved and then becomes a list of function pointers.
Note that the itable corresponds to the interface type, not the dynamic type.
In terms of our example, the itable for Stringer holding type Binary lists the methods used to satisfy Stringer, which is just String: Binary's other methods (Get) make no appearance in the itable.
The second word in the interface value points at the actual data, in this case a copy of b.
The assignment var s Stringer = b makes a copy of b rather than point at b for the same reason that var c uint64 = b makes a copy: if b later changes, s and c are supposed to have the original value, not the new one.
Values stored in interfaces might be arbitrarily large, but only one word is dedicated to holding the value in the interface structure, so the assignment allocates a chunk of memory on the heap and records the pointer in the one-word slot.
Issue 33232 seems to point out to any as an alias to interface{} in Go 1.18 (Q1 2022)
Russ Cox explains:
'any' being only for constraints is a detail that will be in every writeup of generics - books, blog posts, and so on.
If we think we are likely to allow it eventually, it makes sense to allow it from the start and avoid invalidating all that written material.
'any' being only for constraints is an unexpected cut-out that reduces generality and orthogonality of concepts.
It's easy to say "let's just wait and see", but prescribing uses tends to create much more jagged features than full generality. We saw this with type aliases as well (and resisted almost all the proposed cut-outs, thankfully).
If 'any' is allowed in generics but not non-generic code, then it might encourage people to overuse generics simply because 'any' is nicer to write than 'interface{}', when the decision about generics or not should really be made by considering other factors.
If we allow 'any' for ordinary non-generic usage too, then seeing interface{} in code could serve as a kind of signal that the code predates generics and has not yet been reconsidered in the post-generics world.
Some code using interface{} should use generics. Other code should continue to use interfaces.
Rewriting it one way or another to remove the text 'interface{}' would give people a clear way to see what they'd updated and hadn't. (Of course, some code that might be better with generics must still use interface{} for backwards-compatibility reasons, but it can still be updated to confirm that the decision was considered and made.)
That thread also includes an explanation about interface{}:
It's not a special design, but a logical consequence of Go's type declaration syntax.
You can use anonymous interfaces with more than zero methods:
func f(a interface{Foo(); Bar()}) {
a.Foo()
a.Bar()
}
Analogous to how you can use anonymous structs anywhere a type is expected:
func f(a struct{Foo int; Bar string}) {
fmt.Println(a.Foo)
fmt.Println(a.Bar)
}
An empty interface just happens to match all types because all types have at least zero methods.
Removing interface{} would mean removing all interface functionality from the language if you want to stay consistent / don't want to introduce a special case.
interface{} means you can put value of any type, including your own custom type. All types in Go satisfy an empty interface (interface{} is an empty interface).
In your example, Msg field can have value of any type.
Example:
package main
import (
"fmt"
)
type Body struct {
Msg interface{}
}
func main() {
b := Body{}
b.Msg = "5"
fmt.Printf("%#v %T \n", b.Msg, b.Msg) // Output: "5" string
b.Msg = 5
fmt.Printf("%#v %T", b.Msg, b.Msg) //Output: 5 int
}
Go Playground
There are already good answers here. Let me add my own too for others who want to understand it intuitively:
Interface
Here's an interface with one method:
type Runner interface {
Run()
}
So any type that has a Run() method satisfies the Runner interface:
type Program struct {
/* fields */
}
func (p Program) Run() {
/* running */
}
func (p Program) Stop() {
/* stopping */
}
Although the Program type has also a Stop method, it still satisfies the Runner interface because all that is needed is to have all of the methods of an interface to satisfy it.
So, it has a Run method and it satisfies the Runner interface.
Empty Interface
Here's a named empty interface without any methods:
type Empty interface {
/* it has no methods */
}
So any type satisfies this interface. Because, no method is needed to satisfy this interface. For example:
// Because, Empty interface has no methods, following types satisfy the Empty interface
var a Empty
a = 5
a = 6.5
a = "hello"
But, does the Program type above satisfy it? Yes:
a = Program{} // ok
interface{} is equal to the Empty interface above.
var b interface{}
// true: a == b
b = a
b = 9
b = "bye"
As you see, there's nothing mysterious about it but it's very easy to abuse. Stay away from it as much as you can.
https://play.golang.org/p/A-vwTddWJ7G
It's called the empty interface and is implemented by all types, which means you can put anything in the Msg field.
Example :
body := Body{3}
fmt.Printf("%#v\n", body) // -> main.Body{Msg:3}
body = Body{"anything"}
fmt.Printf("%#v\n", body) // -> main.Body{Msg:"anything"}
body = Body{body}
fmt.Printf("%#v\n", body) // -> main.Body{Msg:main.Body{Msg:"anything"}}
This is the logical extension of the fact that a type implements an interface as soon as it has all methods of the interface.
From the Golang Specifications:
An interface type specifies a method set called its interface. A
variable of interface type can store a value of any type with a method
set that is any superset of the interface. Such a type is said to
implement the interface. The value of an uninitialized variable of
interface type is nil.
A type implements any interface comprising any subset of its methods
and may therefore implement several distinct interfaces. For instance,
all types implement the empty interface:
interface{}
The concepts to graps are:
Everything has a Type. You can define a new type, let's call it T. Let's say now our Type T has 3 methods: A, B, C.
The set of methods specified for a type is called the "interface type". Let's call it in our example: T_interface. Is equal to T_interface = (A, B, C)
You can create an "interface type" by defining the signature of the methods. MyInterface = (A, )
When you specify a variable of type, "interface type", you can assign to it only types which have an interface that is a superset of your interface.
That means that all the methods contained in MyInterface have to be contained inside T_interface
You can deduce that all the "interface types" of all the types are a superset of the empty interface.
An example that extends the excellent answer by #VonC and the comment by #NickCraig-Wood. interface{} can point to anything and you need a cast/type assertion to use it.
package main
import (
. "fmt"
"strconv"
)
var c = cat("Fish")
var d = dog("Bone")
func main() {
var i interface{} = c
switch i.(type) {
case cat:
c.Eat() // Fish
}
i = d
switch i.(type) {
case dog:
d.Eat() // Bone
}
i = "4.3"
Printf("%T %v\n", i, i) // string 4.3
s, _ := i.(string) // type assertion
f, _ := strconv.ParseFloat(s, 64)
n := int(f) // type conversion
Printf("%T %v\n", n, n) // int 4
}
type cat string
type dog string
func (c cat) Eat() { Println(c) }
func (d dog) Eat() { Println(d) }
i is a variable of an empty interface with a value cat("Fish"). It is legal to create a method value from a value of interface type. See https://golang.org/ref/spec#Interface_types.
A type switch confirms i interface type is cat("Fish") . See https://golang.org/doc/effective_go.html#type_switch. i is then reassigned to dog("Bone"). A type switch confirms that i interface’s type has changed to dog("Bone") .
You can also ask the compiler to check that the type T implements the interface I by attempting an assignment: var _ I = T{}. See https://golang.org/doc/faq#guarantee_satisfies_interface and https://stackoverflow.com/a/60663003/12817546.
All types implement the empty interface interface{}. See https://talks.golang.org/2012/goforc.slide#44 and https://golang.org/ref/spec#Interface_types . In this example, i is reassigned, this time to a string "4.3".i is then assigned to a new string variable s with i.(string) before s is converted to a float64 type f using strconv. Finally f is converted to n an int type equal to 4. See What is the difference between type conversion and type assertion?
Go's built-in maps and slices, plus the ability to use the empty interface to construct containers (with explicit unboxing) mean in many cases it is possible to write code that does what generics would enable, if less smoothly. See https://golang.org/doc/faq#generics.
Interface is a type which is unknown at compile time
It is a contract between object and the struct type to satisfy with common functionality
or
common functionality acting on different types of struct objects
for example in the below code PrintDetails is a common functionality acting on different types of structs as Engineer,Manager,
Seniorhead
please find the example code
interface examplehttps://play.golang.org/p/QnAqEYGiiF7
A method can bind to any type(int, string, pointer, and so on) in GO
Interface is a way of declear what method one type should have, as long as A type has implement those methods, this can be assigned to this interface.
Interface{} just has no declear of method, so it can accept any type

Resources