Formula to evenly arrange lines on perspective imitation? - algorithm

In short: How to calculate h0...h4?
When imitating perspective, which formula is used to calculate h(0) to h(n) distances when known deformation values like either top-width-to-bottom-width ratio, or angle a (whichever parameter is useful for that)?

We can see perpective transformation having axial symmetry around vertical axis.
So transformation of rectangle with coordinates (0,0)-(SrcWdt, SrcHgt) with axial line at SrcWdt/2
gives trapezoid centered vertically with axial line at DstWdt/2 and coordinates of right corners RBX, RBY, RTX, RTY
In this case transformation formulas are a bit simpler (than general case)
X' = DstXCenter + A * (X - XCenter) / (H * Y + 1)
Y' = (RBY + E * Y) / (H * Y + 1)
And we can calculate coefficients A, E, H without solving of eight linear equation system using only coordinates of two corners of trapezoid.
Delphi code:
procedure CalcAxialSymPersp(SrcWdt, SrcHgt, DstWdt, RBX, RBY, RTX, RTY: Integer;
var A, H, E: Double);
begin
A := (2 * RBX - DstWdt) / SrcWdt;
H := (A * SrcWdt/ (2 * RTX - DstWdt) - 1) / SrcHgt;
E := (RTY * (H * SrcHgt + 1) - RBY) / SrcHgt;
end;
Having coefficients, we can apply transformation to any source point PSrc and get coordinates of mapped point. In your case PSrc.X = 0 and PSrc.Y = i * SrcHgt / 5 for i=1..4 will give Y-coordinates od horizontal lines.
procedure PerspMap(SrcWdt, DstWdt, RBY: Integer; A, H, E: Double; PSrc: TPoint): TPoint;
begin
Result.X := Round(DstWdt / 2 + A * (PSrc.X - SrcWdt/2) / (H * PSrc.Y + 1));
Result.Y := Round((RBY + E * PSrc.Y) / (H * PSrc.Y + 1));
end;

Related

How to create a spherical angular gradient around y-axis using Lua in Filter Forge?

I am working on a Spherical Map Script that generates a linear gradient along the y-axis and an angular gradient around the y-axis in the green and red channels, respectively. I have been unable to find any documentation suited to this online, but have experimented using examples in Javascript and C#. The linear gradient has worked out fine, but the angular gradient (one describing a 360 degree arc around the y-axis) continues to elude me.
My working script is as follows.
-- 3d sphere
-- produces rgb gradudient mapped to a 3d sphere, but not correctly.
-- this is basically missing an angle gradient around the y-axis...
function prepare()
-- tilt & rotation precalc
toRad = 180/math.pi
-- toCir = 360/math.p -- may or may not work for circumference...
radius = get_slider_input(RADIUS)
angle = get_angle_input(ROTATION)/toRad
cosa = math.cos(angle)
sina = math.sin(angle)
tilt = get_angle_input(TILT)/toRad
cosa2 = math.cos(tilt)
sina2 = math.sin(tilt)
end;
function get_sample(x, y)
local r, g, b, a = get_sample_map(x, y, SOURCE)
-- color gradient example
-- local r = x
-- local g = y
-- local b = (x + y) / 2
-- local a = 1
-- spherical mapping formulae (polar to cartesian, apparently)
-- local x = x * math.pi -- * aspect
-- local y = y * math.pi
-- local nx = math.cos(x) * math.sin(y)
-- local ny = math.sin(x) * math.sin(y)
-- local nz = math.cos(y)
-- cartesian to polar (reference)
-- example 1
-- r = math.sqrt(((x * x) + (y * y) + (z * z)))
-- long = math.acos(x / math.sqrt((x * x) + (y * y))) * (y < 0 ? -1 : 1)
-- lat = math.acos(z / radius) * (z < 0 ? -1 : 1)
-- example 2
-- r = math.sqrt((x * x) + (y * y) + (z * z))
-- long = math.acos(x / math.sqrt((x * x) + (y * y))) * (y < 0 ? -1 : 1)
-- lat = math.acos(z / r)
-- equations cannot accept boolean comparison
-- boolean syntax may not be valid in lua
-- image generation
-- shift origin to center and set radius limits
local px = (x*2.0) - 1.0
local py = (y*2.0) - 1.0
px = px/radius
py = py/radius
local len = math.sqrt((px*px)+(py*py))
if len > 1.0 then return 0,0,0,0 end
local z = -math.sqrt(1.0 - ((px*px)+(py*py)))
-- cartesian to polar
-- r = math.sqrt((x * x) + (y * y) + (z * z))
-- lat = math.acos(z / r)
-- long = math.acos(x / math.sqrt((x * x) + (y * y))) * (y < 0) ? -1 : 1)
-- apply rotaqtion and tilt (order is important)
local tz = (cosa2 * z) - (sina2 * py)
local ty = (sina2 * z) + (cosa2 * py) -- gradient along y-axis is correct
z = tz
py = ty
local tx = (cosa * px) - (sina * z) -- gradient needs to go around y-axis
local tz = (sina * px) + (cosa * z)
px = tx
z = tz
-- r = math.sqrt((x * x) + (y * y) + (z * z))
-- lat = math.acos(z / r) -- invalid z for this; what is correct source?
-- long = math.acos(x / math.sqrt((x * x) + (y * y))) -- map -1 : 1 needed
-- long = (sina * px) + (cosa * z) -- ok; 2 full rotations
-- return r, g, b, a
-- return px,py,z,a
return px/2+.5,py/2+.5,z/2+.5,a
-- return px/2+.5,px/2+.5,px/2+.5,a
-- return long,long,long,a
-- return px/2+.5,py/2+.5,long,a
end;
I found a way to construct a spherical angular gradient from the hemispherical axis gradients I started with, by using three as the RBG channels in an RBG to HSL conversion. I've used this to map textures to spheres in Filter Forge in map scripts like this.
I thought I'd share the solution for anyone who's followed my question here.

Time-efficient algorithm to find the largest area in a grid with constraints

In a 2D grid, we start from the origin (0, 0) and then we can move by one cell at the time with either (x+1, x-1, y+1, y-1).
I have to find the largest area with this constraint: for any point in the area, the sum of the digits of abs(x) plus the sum of the digits of abs(y) should be at most 23.
For example, the point (59,75) isn't valid because 5 + 9 + 7 + 5 = 26.
The point (-51, -7) is valid because 5 + 1 + 7 = 13, which is less than 23.
What could be a way to solve this with great time-complexity ?
Look at this picture. It shows as white those points with digits sum < 23 in the first quadrant reachable from coordinate origin (edit: needed <=23).
Seems it is not hard to make breadth-first search like flood-fill with special border condition sumdigit <=23 (coordinate limit is 699) and count them all.
White filling spreads from origin until border value is met. This process resembles water flooding with level 23. Black islands stay in white sea and solid black border limits it. Count of white pixels is area of continuous region around origin.
.
Moreover, it is possible to determine count of white points in every 100x100 square depending on its coordinates and get mathematical formula.
Scaled fragment:
Primitive implementation in Delphi (there are effective non-recursive Floodfill implementations) gives white pixel count 592597
var
mark: TDictionary<Integer, Integer>;
function digitsum(x, y: integer): integer;
begin
if mark.ContainsKey((x + 1000) * 2000 + y + 1000) then
Exit(9999);
Result := 0;
x := abs(x);
y := abs(y);
while y > 0 do begin
Result := Result + y mod 10;
y := y div 10;
end;
while x > 0 do begin
Result := Result + x mod 10;
x := x div 10;
end;
end;
function flood(x, y: integer): integer;
begin
if digitsum(x,y) > 23 then
Exit(0);
Result := 1;
mark.Add((x + 1000) * 2000 + y + 1000, 0);
Canvas.Pixels[x, y] := clWhite;
Inc(Result, flood(x + 1, y));
Inc(Result, flood(x - 1, y));
Inc(Result, flood(x, y - 1));
Inc(Result, flood(x, y + 1));
end;
begin
Canvas.Brush.Color := clBlack;
Canvas.FillRect(ClientRect);
mark:= TDictionary<Integer, Integer>.Create;
Caption := flood(0, 0).ToString;

algorithm of turning a distorted rectangle back to normal

I am thinking a way to transform a distorted rectangle back to normal but I have no idea how. I cannot find any information about it as well. Could anyone provide some information about how to do the trick only knowing the x, y position of the 4 junctions? Known the rectangle was 640 x 480 before distorted.
I think the problem can be solved by finding the transformation matrix in linear algebra. Since there is information about the original and the final matrix.
You have coordinates of 4 corners of distorted rectangle and want to transform it to some rectangle. In this case you need perspective transformation. Just define points for resulting rectangle as you want (for example, unit square in coordinate origin).
Now you have 8 pairs of corresponding parameters (x and y for every point), and need to calculate 8 parameters of matrix using 8 equations
//four pairs of such equations:
x' = (A * x + B * y + C) / (G * x + H * y + 1.0)
y' = (D * x + E * y + F) / (G * x + H * y + 1.0)
Theory of finding perspective transformation matrix is described in Paul Heckbert article.
C++ implementation could be found in antigrain library (file agg_trans_perspective.h)
Use OpenCV.
sample tip
Point lt = Point(200, 40) ;
Point rt = Point(500, 44) ;
Point rb = Point(740, 355) ;
Point lb = Point(30, 200) ;
vector<Point> rect ;
rect.push_back(lt) ;
rect.push_back(rt) ;
rect.push_back(rb) ;
rect.push_back(lb) ;
double w1 = sqrt(pow(rb.x-lb.x, 2)+pow(rb.y-lb.y, 2)) ;
double w2 = sqrt(pow(rt.x-lt.x, 2)+pow(rt.y-lt.y, 2)) ;
double h1 = sqrt(pow(rb.x-rt.x, 2)+pow(rb.y-rt.y, 2)) ;
double h2 = sqrt(pow(lb.x-lt.x, 2)+pow(lb.y-lt.y, 2)) ;
double maxW = (w1<w2)? w2 : w1 ;
double maxH = (h1<h2)? h2 : h1 ;
Point2f src[4], dst[4] ;
src[0]=Point2f(lt.x, lt.y) ;
src[1]=Point2f(rt.x, rt.y) ;
src[2]=Point2f(rb.x, rb.y) ;
src[4]=Point2f(lb.x, lb.y) ;
dst[0]=Point2f(0,0) ;
dst[1]=Point2f(maxW, 0) ;
dst[2]=Point2f(maxW, maxH) ;
dst[3]=Point2f(0, maxH) ;
tfMat = getPerspectiveTransform(src, dst) ;
wrapPerspective(srcImage, dstImage, trMat, Size(maxW, maxH)) ;

Coordinates of every point on a circle's circumference

First, please note, that this question is not a duplicate of these: 1st , 2nd , and 3rd.
I am using delphi and openCV, but I am looking for an algorithm, a solution regardless of the language.
For the purpose of a precise image analysis, I need to check for changes in pixel intensity in circular areas. So I read pixel values on a circumference of continuously growing circle. To be able to do that, I of course need to know coordinates of the pixels.
The best solution I found is y:= Round(centerY + radius * sin(angle)), x:= Round(centerX + radius * cos(angle)), while because counting with only 360 degrees is hardly enough, when the radius of the circle is larger, than circa 60px, the angle is being counted like this angle:= angle + (360 / (2 * 3.14 * currentRadius)) -> I sweep through every value from 0 to 360, while the value is being incremented by a fraction of 360/circumference of the circle in pixels. But this approach is not very precise. The larger the circle, the smaller the fraction of the angle needs to be and the precission suffers from the inaccuracy of Pi, plus the rounding.
If I use the mentioned method, and try to draw the counted pixels with this code:
centerX:= 1700;
centerY:= 1200;
maxRadius:= 500;
for currentRadius:= 80 to maxRadius do
begin
angle:= 0;
while angle < 360 do
begin
xI:= Round(centerX + currentRadius * cos(angle));
yI:= Round(centerY + currentRadius * sin(angle));
angle:= angle + (360 / (2 * 3.14 * currentRadius));
//this is openCV function, to test the code, you can use anything, that will draw a dot...
cvLine(image,cvPoint(xI,yI),cvPoint(xI,yI),CV_RGB(0, 255, 0));
end;
end;
the result is this:
It is not bad, but taking into account, that rougly a third of all pixels in the circular area are black, you realize, that a lot of pixels has been "skipped". Plus looking closely on the edge of the last circle, there is clearly visible, that some dots are off the actual circumference - another result of the inaccuracy...
I could possibly use a formula (x - xorig)^2 + (y - yorig)^2 = r^2 to check every possible pixel in a rectangular area around the center, slightly bigger, than a diameter of the circle, if it does, or does't fall onto the cirle's circumference. But that would be very slow to repeat it all the time, as the circle grows.
Is there something, that could be done better? Could anyone help me to improve this? I don't insist on anything from my solution at all, and will accept any other solution, as long as it gives the desired results => let me read values of all (or the vast majority - 95%+) pixels on a circumference of a circle with given center and radius. The faster, the better...
1) Build a list of pixels of the smallest radius circumference. It is enough to
keep the first octant (range 0..Pi/4 in the 1st quadrant of coordinate system) of circle, and get symmetric points with reflections.
You can use, for example, Bresenham circle algorithm or just circle equation.
2) For the next iteration walk through all coordinates in the list (use right one, if there are two points with the same Y value) and check whether right neighbor (or two neighbors!) lies inside the next radius. For the last point check also top, right-top neighbor (at Pi/4 diagonal).
Insert good neighbors (one or two) into the next coordinate list.
Example for Y=5.
R=8 X=5,6 //note that (5,5) point is not inside r=7 circle
R=9 X=7
R=10 X=8
R=11 X=9
R=12 X=10
R=13 X=11,12 //!
R=14 X=13
With this approach you will use all the pixels in maximal radius circle without gaps, and checking process for list generation is rather fast.
Edit:
Code implements slightly another approach, it uses lower line pixel limit to built upper line.
It generates circles in given range, paints them to psychedelic colors. All math is in integers, no floats, no trigonometric functions! Pixels are used only for demonstration purposes.
procedure TForm1.Button16Click(Sender: TObject);
procedure FillCircles(CX, CY, RMin, RMax: Integer);
//control painting, slow due to Pixels using
procedure PaintPixels(XX, YY, rad: Integer);
var
Color: TColor;
r, g, B: Byte;
begin
g := (rad mod 16) * 16;
r := (rad mod 7) * 42;
B := (rad mod 11) * 25;
Color := RGB(r, g, B);
// Memo1.Lines.Add(Format('%d %d %d', [rad, XX, YY]));
Canvas.Pixels[CX + XX, CY + YY] := Color;
Canvas.Pixels[CX - YY, CY + XX] := Color;
Canvas.Pixels[CX - XX, CY - YY] := Color;
Canvas.Pixels[CX + YY, CY - XX] := Color;
if XX <> YY then begin
Canvas.Pixels[CX + YY, CY + XX] := Color;
Canvas.Pixels[CX - XX, CY + YY] := Color;
Canvas.Pixels[CX - YY, CY - XX] := Color;
Canvas.Pixels[CX + XX, CY - YY] := Color;
end;
end;
var
Pts: array of array [0 .. 1] of Integer;
iR, iY, SqD, SqrLast, SqrCurr, MX, LX, cnt: Integer;
begin
SetLength(Pts, RMax);
for iR := RMin to RMax do begin
SqrLast := Sqr(iR - 1) + 1;
SqrCurr := Sqr(iR);
LX := iR; // the most left X to check
for iY := 0 to RMax do begin
cnt := 0;
Pts[iY, 1] := 0; // no second point at this Y-line
for MX := LX to LX + 1 do begin
SqD := MX * MX + iY * iY;
if InRange(SqD, SqrLast, SqrCurr) then begin
Pts[iY, cnt] := MX;
Inc(cnt);
end;
end;
PaintPixels(Pts[iY, 0], iY, iR);
if cnt = 2 then
PaintPixels(Pts[iY, 1], iY, iR);
LX := Pts[iY, 0] - 1; // update left limit
if LX < iY then // angle Pi/4 is reached
Break;
end;
end;
// here Pts contains all point coordinates for current iR radius
//if list is not needed, remove Pts, just use PaintPixels-like output
end;
begin
FillCircles(100, 100, 10, 100);
//enlarge your first quadrant to check for missed points
StretchBlt(Canvas.Handle, 0, 200, 800, 800, Canvas.Handle, 100, 100, 100,
100, SRCCOPY);
end;
If you want to make your code faster, don't call trigonometric functions inside the inner loop, increment sin(angle) and cos(angle) using
sin(n*step)=sin((n-1)*step)*cos(step)+sin(step)*cos((n-1)*step)
cos(n*step)=cos((n-1)*step)*cos(step)-sin(step)*sin((n-1)*step)
that is
...
for currentRadius:= 80 to maxRadius do
begin
sinangle:= 0;
cosangle:= 1;
step:= 1 / currentRadius; // ?
sinstep:= sin(step);
cosstep:= cos(step);
while {? } do
begin
xI:= Round(centerX + currentRadius * cosangle);
yI:= Round(centerY + currentRadius * sinangle);
newsin:= sinangle*cosstep + sinstep*cosangle;
newcos:= cosangle*cosstep - sinstep*sinangle;
sinangle:= newsin;
cosangle:= newcos;
...
end;
end;
First of all: you want all the points on a circle circumference. If you use any (good) algorithm, also some built-in circle function, you get indeed all the points, since the circumference is connected.
What your picture shows, there are holes between neighbour circles, say r=100 and r=101. This is so for circumference drawing functions.
Now if you want that the pixels in your pixel set to cover all the pixels with incrementing radii, you can simply use following approach:
Build a set of filled circle pixels, say r = 101
Build a set of filled circle pixel with r = 100
Exclude set 2 from set 1
Filled circle algorithm is generally more efficient and simpler than connected circumference so you'll not loose much performance.
So you get a circumference which is slightly thicker than 1 px, but this set will surely cover the surface with growing radii without any holes. But it can also happen that the set built in such a way has overlapping pixels with previous set (r-1), so you'd know it better if you test it.
PS: Also it is not clear how any trigonometric functions appear in your code. I don't know any effective circle algorithm which use anything other than square root.
Why don't you simply use more digits for Pi and stop rounding to improve accuracy?
Further I suggest you use subpixel coordinates to get more accurate intensity values if you can afford the interpolation.
It's also very uncommon to use degrees in calculations. I highly recommend using radians. Not sure which functions you use here but Delphi's cos and sin seem to expect radians!

Calculate largest inscribed rectangle in a rotated rectangle

I'm trying to find the best way to calculate the biggest (in area) rectangle which can be contained inside a rotated rectangle.
Some pictures should help (I hope) in visualizing what I mean:
The width and height of the input rectangle is given and so is the angle to rotate it. The output rectangle is not rotated or skewed.
I'm going down the longwinded route which I'm not even sure if it will handle the corner cases (no pun intended). I'm certain there is an elegant solution to this. Any tips?
EDIT: The output rectangle points don't necessarily have to touch the input rectangles edges. (Thanks to Mr E)
I just came here looking for the same answer. After shuddering at the thought of so much math involved, I thought I would resort to a semi-educated guess. Doodling a bit I came to the (intuitive and probably not entirely exact) conclusion that the largest rectangle is proportional to the outer resulting rectangle, and its two opposing corners lie at the intersection of the diagonals of the outer rectangle with the longest side of the rotated rectangle. For squares, any of the diagonals and sides would do... I guess I am happy enough with this and will now start brushing the cobwebs off my rusty trig skills (pathetic, I know).
Minor update... Managed to do some trig calculations. This is for the case when the Height of the image is larger than the Width.
Update. Got the whole thing working. Here is some js code. It is connected to a larger program, and most variables are outside the scope of the functions, and are modified directly from within the functions. I know this is not good, but I am using this in an isolated situation, where there will be no confusion with other scripts: redacted
I took the liberty of cleaning the code and extracting it to a function:
function getCropCoordinates(angleInRadians, imageDimensions) {
var ang = angleInRadians;
var img = imageDimensions;
var quadrant = Math.floor(ang / (Math.PI / 2)) & 3;
var sign_alpha = (quadrant & 1) === 0 ? ang : Math.PI - ang;
var alpha = (sign_alpha % Math.PI + Math.PI) % Math.PI;
var bb = {
w: img.w * Math.cos(alpha) + img.h * Math.sin(alpha),
h: img.w * Math.sin(alpha) + img.h * Math.cos(alpha)
};
var gamma = img.w < img.h ? Math.atan2(bb.w, bb.h) : Math.atan2(bb.h, bb.w);
var delta = Math.PI - alpha - gamma;
var length = img.w < img.h ? img.h : img.w;
var d = length * Math.cos(alpha);
var a = d * Math.sin(alpha) / Math.sin(delta);
var y = a * Math.cos(gamma);
var x = y * Math.tan(gamma);
return {
x: x,
y: y,
w: bb.w - 2 * x,
h: bb.h - 2 * y
};
}
I encountered some problems with the gamma-calculation, and modified it to take into account in which direction the original box is the longest.
-- Magnus Hoff
Trying not to break tradition putting the solution of the problem as a picture:)
Edit:
Third equations is wrong. The correct one is:
3.w * cos(α) * X + w * sin(α) * Y - w * w * sin(α) * cos(α) - w * h = 0
To solve the system of linear equations you can use Cramer rule, or Gauss method.
First, we take care of the trivial case where the angle is zero or a multiple of pi/2. Then the largest rectangle is the same as the original rectangle.
In general, the inner rectangle will have 3 points on the boundaries of the outer rectangle. If it does not, then it can be moved so that one vertex will be on the bottom, and one vertex will be on the left. You can then enlarge the inner rectangle until one of the two remaining vertices hits a boundary.
We call the sides of the outer rectangle R1 and R2. Without loss of generality, we can assume that R1 <= R2. If we call the sides of the inner rectangle H and W, then we have that
H cos a + W sin a <= R1
H sin a + W cos a <= R2
Since we have at least 3 points on the boundaries, at least one of these inequality must actually be an equality. Let's use the first one. It is easy to see that:
W = (R1 - H cos a) / sin a
and so the area is
A = H W = H (R1 - H cos a) / sin a
We can take the derivative wrt. H and require it to equal 0:
dA/dH = ((R1 - H cos a) - H cos a) / sin a
Solving for H and using the expression for W above, we find that:
H = R1 / (2 cos a)
W = R1 / (2 sin a)
Substituting this in the second inequality becomes, after some manipulation,
R1 (tan a + 1/tan a) / 2 <= R2
The factor on the left-hand side is always at least 1. If the inequality is satisfied, then we have the solution. If it isn't satisfied, then the solution is the one that satisfies both inequalities as equalities. In other words: it is the rectangle which touches all four sides of the outer rectangle. This is a linear system with 2 unknowns which is readily solved:
H = (R2 cos a - R1 sin a) / cos 2a
W = (R1 cos a - R2 sin a) / cos 2a
In terms of the original coordinates, we get:
x1 = x4 = W sin a cos a
y1 = y2 = R2 sin a - W sin^2 a
x2 = x3 = x1 + H
y3 = y4 = y2 + W
Edit: My Mathematica answer below is wrong - I was solving a slightly different problem than what I think you are really asking.
To solve the problem you are really asking, I would use the following algorithm(s):
On the Maximum Empty Rectangle Problem
Using this algorithm, denote a finite amount of points that form the boundary of the rotated rectangle (perhaps a 100 or so, and make sure to include the corners) - these would be the set S decribed in the paper.
.
.
.
.
.
For posterity's sake I have left my original post below:
The inside rectangle with the largest area will always be the rectangle where the lower mid corner of the rectangle (the corner near the alpha on your diagram) is equal to half of the width of the outer rectangle.
I kind of cheated and used Mathematica to solve the algebra for me:
From this you can see that the maximum area of the inner rectangle is equal to 1/4 width^2 * cosecant of the angle times the secant of the angle.
Now I need to figure out what is the x value of the bottom corner for this optimal condition. Using the Solve function in mathematica on my area formula, I get the following:
Which shows that the x coordinate of the bottom corner equals half of the width.
Now just to make sure, I'll going to test our answer empirically. With the results below you can see that indeed the highest area of all of my tests (definately not exhaustive but you get the point) is when the bottom corner's x value = half of the outer rectangle's width.
#Andri is not working correctly for image where width > height as I tested.
So, I fixed and optimized his code by such way (with only two trigonometric functions):
calculateLargestRect = function(angle, origWidth, origHeight) {
var w0, h0;
if (origWidth <= origHeight) {
w0 = origWidth;
h0 = origHeight;
}
else {
w0 = origHeight;
h0 = origWidth;
}
// Angle normalization in range [-PI..PI)
var ang = angle - Math.floor((angle + Math.PI) / (2*Math.PI)) * 2*Math.PI;
ang = Math.abs(ang);
if (ang > Math.PI / 2)
ang = Math.PI - ang;
var sina = Math.sin(ang);
var cosa = Math.cos(ang);
var sinAcosA = sina * cosa;
var w1 = w0 * cosa + h0 * sina;
var h1 = w0 * sina + h0 * cosa;
var c = h0 * sinAcosA / (2 * h0 * sinAcosA + w0);
var x = w1 * c;
var y = h1 * c;
var w, h;
if (origWidth <= origHeight) {
w = w1 - 2 * x;
h = h1 - 2 * y;
}
else {
w = h1 - 2 * y;
h = w1 - 2 * x;
}
return {
w: w,
h: h
}
}
UPDATE
Also I decided to post the following function for proportional rectange calculating:
calculateLargestProportionalRect = function(angle, origWidth, origHeight) {
var w0, h0;
if (origWidth <= origHeight) {
w0 = origWidth;
h0 = origHeight;
}
else {
w0 = origHeight;
h0 = origWidth;
}
// Angle normalization in range [-PI..PI)
var ang = angle - Math.floor((angle + Math.PI) / (2*Math.PI)) * 2*Math.PI;
ang = Math.abs(ang);
if (ang > Math.PI / 2)
ang = Math.PI - ang;
var c = w0 / (h0 * Math.sin(ang) + w0 * Math.cos(ang));
var w, h;
if (origWidth <= origHeight) {
w = w0 * c;
h = h0 * c;
}
else {
w = h0 * c;
h = w0 * c;
}
return {
w: w,
h: h
}
}
Coproc solved this problem on another thread (https://stackoverflow.com/a/16778797) in a simple and efficient way. Also, he gave a very good explanation and python code there.
Below there is my Matlab implementation of his solution:
function [ CI, T ] = rotateAndCrop( I, ang )
%ROTATEANDCROP Rotate an image 'I' by 'ang' degrees, and crop its biggest
% inner rectangle.
[h,w,~] = size(I);
ang = deg2rad(ang);
% Affine rotation
R = [cos(ang) -sin(ang) 0; sin(ang) cos(ang) 0; 0 0 1];
T = affine2d(R);
B = imwarp(I,T);
% Largest rectangle
% solution from https://stackoverflow.com/a/16778797
wb = w >= h;
sl = w*wb + h*~wb;
ss = h*wb + w*~wb;
cosa = abs(cos(ang));
sina = abs(sin(ang));
if ss <= 2*sina*cosa*sl
x = .5*min([w h]);
wh = wb*[x/sina x/cosa] + ~wb*[x/cosa x/sina];
else
cos2a = (cosa^2) - (sina^2);
wh = [(w*cosa - h*sina)/cos2a (h*cosa - w*sina)/cos2a];
end
hw = flip(wh);
% Top-left corner
tl = round(max(size(B)/2 - hw/2,1));
% Bottom-right corner
br = tl + round(hw);
% Cropped image
CI = B(tl(1):br(1),tl(2):br(2),:);
sorry for not giving a derivation here, but I solved this problem in Mathematica a few days ago and came up with the following procedure, which non-Mathematica folks should be able to read. If in doubt, please consult http://reference.wolfram.com/mathematica/guide/Mathematica.html
The procedure below returns the width and height for a rectangle with maximum area that fits into another rectangle of width w and height h that has been rotated by alpha.
CropRotatedDimensionsForMaxArea[{w_, h_}, alpha_] :=
With[
{phi = Abs#Mod[alpha, Pi, -Pi/2]},
Which[
w == h, {w,h} Csc[phi + Pi/4]/Sqrt[2],
w > h,
If[ Cos[2 phi]^2 < 1 - (h/w)^2,
h/2 {Csc[phi], Sec[phi]},
Sec[2 phi] {w Cos[phi] - h Sin[phi], h Cos[phi] - w Sin[phi]}],
w < h,
If[ Cos[2 phi]^2 < 1 - (w/h)^2,
w/2 {Sec[phi], Csc[phi]},
Sec[2 phi] {w Cos[phi] - h Sin[phi], h Cos[phi] - w Sin[phi]}]
]
]
Here is the easiest way to do this... :)
Step 1
//Before Rotation
int originalWidth = 640;
int originalHeight = 480;
Step 2
//After Rotation
int newWidth = 701; //int newWidth = 654; //int newWidth = 513;
int newHeight = 564; //int newHeight = 757; //int newHeight = 664;
Step 3
//Difference in height and width
int widthDiff ;
int heightDiff;
int ASPECT_RATIO = originalWidth/originalHeight; //Double check the Aspect Ratio
if (newHeight > newWidth) {
int ratioDiff = newHeight - newWidth;
if (newWidth < Constant.camWidth) {
widthDiff = (int) Math.floor(newWidth / ASPECT_RATIO);
heightDiff = (int) Math.floor((originalHeight - (newHeight - originalHeight)) / ASPECT_RATIO);
}
else {
widthDiff = (int) Math.floor((originalWidth - (newWidth - originalWidth) - ratioDiff) / ASPECT_RATIO);
heightDiff = originalHeight - (newHeight - originalHeight);
}
} else {
widthDiff = originalWidth - (originalWidth);
heightDiff = originalHeight - (newHeight - originalHeight);
}
Step 4
//Calculation
int targetRectanleWidth = originalWidth - widthDiff;
int targetRectanleHeight = originalHeight - heightDiff;
Step 5
int centerPointX = newWidth/2;
int centerPointY = newHeight/2;
Step 6
int x1 = centerPointX - (targetRectanleWidth / 2);
int y1 = centerPointY - (targetRectanleHeight / 2);
int x2 = centerPointX + (targetRectanleWidth / 2);
int y2 = centerPointY + (targetRectanleHeight / 2);
Step 7
x1 = (x1 < 0 ? 0 : x1);
y1 = (y1 < 0 ? 0 : y1);
This is just an illustration of Jeffrey Sax's solution above, for my future reference.
With reference to the diagram above, the solution is:
(I used the identity tan(t) + cot(t) = 2/sin(2t))

Resources